
Turnstile: Hybrid Information Flow Control
Framework for Managing Privacy in
Internet-of-Things Applications

Kumseok Jung

kumseok@ece.ubc.ca
The University of British Columbia

Vancouver, British Columbia, Canada

Mohanna Shahrad

mohanna@princeton.edu
Princeton University

Princeton, New Jersey, USA

Gargi Mitra

gargi@ece.ubc.ca
The University of British Columbia

Vancouver, British Columbia, Canada

Karthik Pattabiraman

karthikp@ece.ubc.ca
The University of British Columbia

Vancouver, British Columbia, Canada

Abstract
General awareness in privacy management has increased

over the last decade, from consumers, companies, to govern-

ments. While cloud and mobile applications have taken steps

forward in improving privacy management, the Internet-of-

Things (IoT) domain has been behind in this aspect. Manag-

ing privacy in IoT applications is challenging, firstly because

IoT applications handle data whose privacy implications

change dynamically based on the information it contains.

Second, the fragmented nature of the IoT ecosystem makes it

difficult to apply a solution end-to-end. To provide a solution

to privacy management in IoT, we design and implement

Turnstile, a hybrid information flow control (IFC) framework.

It identifies privacy-sensitive code paths through static taint

analysis, and then integrates a dynamic information flow

tracking (DIFT) mechanism into the application via selective

code instrumentation. We evaluated Turnstile using 61 third-

party IoT applications, and show that it can be an effective

solution for managing the privacy of IoT applications.

CCS Concepts: • Security and privacy → Information
flow control; Domain-specific security and privacy archi-
tectures; Distributed systems security; • Software and its
engineering→ Integration frameworks; Automated static

analysis.

Keywords: Dynamic Information FlowControl, PrivacyMan-

agement, Internet of Things

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

EUROSYS ’26, Edinburgh, Scotland Uk
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2212-7/26/04

https://doi.org/10.1145/3767295.3769352

ACM Reference Format:
Kumseok Jung, Mohanna Shahrad, Gargi Mitra, and Karthik Pattabi-

raman. 2026. Turnstile: Hybrid Information Flow Control Frame-

work for Managing Privacy in Internet-of-Things Applications. In

21st European Conference on Computer Systems (EUROSYS ’26), April
27–30, 2026, Edinburgh, Scotland Uk. ACM, New York, NY, USA,

19 pages. https://doi.org/10.1145/3767295.3769352

1 Introduction
Privacy management in software systems is not just a feature

– it is a requirement. Users are becomingmore privacy-aware

[45, 67], governments are putting regulations in place [1, 58],

and companies are implementing more privacy-enhanced

solutions [25, 74].

Information flow control (IFC) is a well-understood tech-

nique for managing end-to-end privacy in the domain of

cloud [60, 69] and mobile computing [21, 30]. In these ap-

plications, IFC has been mechanized in various forms, from

security-typed languages such as Jif [56], to dynamic infor-

mation flow tracking (DIFT) systems such as TaintDroid [21].

However, it is challenging to adopt an existing approach to

IFC in the Internet-of-Things (IoT) domain, because IoT ap-

plications pose three practical constraints.

First, the privacy implications of the data collected by

IoT applications might vary during run-time. For example,

a retail outlet might use a smart camera to capture video

footage for multiple purposes, such as analyzing customer

behavior or providing evidence of criminal activity. The same

camera application might record an employee in one frame

and a customer in another, each with distinct privacy needs.

Thus, the privacy implications of the footage vary based on

its content and intended use, and we need to dynamically

restrict certain dataflows in the application. To effectively

manage these variations during run-time, the IFC system

must be both dynamic and efficient.
Second, different components of an IoT application are de-

ployed on third-party platforms such as cloud-managed run-

time environments or virtual machines [84]. It is challenging

1

https://orcid.org/0000-0001-8791-1568
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3767295.3769352
https://doi.org/10.1145/3767295.3769352

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

to adopt a DIFT system built into the runtime environment

[18, 31] or the OS [44, 81, 82], because all third-party plat-

form providers would need to support it, which is outside

the developer’s control. Therefore, the IFC system must be

deployable on the same runtime infrastructure as the appli-

cation, without the need for modifying the runtime platform,

i.e., the DIFT mechanism must be platform-independent.
Third, IoT applications are typically composed of modular

components, each of which may be developed by different de-

velopers. It is challenging to adopt a language-based [29, 43]

or a library-based [15, 32] IFC, as it would require rewriting

of all the components written by third-parties. Therefore, an

IoT-friendly DIFT systemmust integrate in a way that allows

the continued use of existing code, i.e., the DIFT systemmust

be non-invasive.
Each of the constraints above, when viewed individually,

are not unique to the IoT domain. However, IoT represents a

unique convergence point where the three practical design

challenges are amplified, making existing DIFT solutions

[15, 18, 29, 31, 32, 43, 44, 81, 82] infeasible and creating a

compelling need for a new IFC system. This paper introduces

Turnstile, a hybrid IFC system for managing privacy in an

end-to-end fashion in IoT applications, that satisfies the above
three constraints. The key idea is to embed a self-contained,
portable DIFT mechanism into only the privacy-sensitive code
paths in the application through dataflow-aware selective code
instrumentation.
Turnstile makes the following three design decisions to

satisfy the above constraints. 1 Turnstile eliminates un-

necessary run-time overheads, by first identifying privacy-

sensitive code paths in the application that need to be man-

aged through static taint analysis
1
. 2 Turnstile’s DIFTmech-

anism is designed to be inlined as part of the application

code, such that it requires no changes to the existing run-

time platforms. 3 Turnstile integrates the DIFT mechanism

through automated code instrumentation, without requiring

the developer to modify the original application code.

To the best of our knowledge, Turnstile is the first IFC system
that achieves low performance overheads, while providing both
platform-independence and non-invasive integration.

In summary, we make the following contributions:

• Propose a technique for reducing the run-time over-

head of DIFT, by selectivelymanaging privacy-sensitive

code paths identified through static dataflow analy-

sis. We developed a specialized static analysis tool for

IoT applications, which efficiently identifies privacy-

sensitive dataflows.

• Develop a portable DIFT mechanism that can be in-

lined in the application code, and thus deployed as part

of the application. As a result, the DIFT-enabled ap-

plication does not require any changes to the runtime

1
Turnstile currently targets JavaScript-based applications, which are popu-

lar in the IoT domain, but the design can be extended to other languages.

infrastructure. Further, the DIFT mechanism is inte-

grated automatically through code instrumentation,

requiring no modification effort from developers.

• Perform a case study integrating Turnstile end-to-end

into Node-RED [27], a popular third-party IoT frame-

work. The case study demonstrates that Turnstile is

non-invasive, as it transparently integrates with ex-

isting code, and that it is platform-independent, as

it can be deployed on the same Node-RED runtime

infrastructure without any modifications.

• Evaluate Turnstile using 61 third-party Node-RED

packages. We compared Turnstile’s privacy-sensitive

dataflow detection performance against CodeQL [34],

an industry-leading static analysis tool. We find that

Turnstile’s dataflow analyzer outperforms CodeQL’s

taint analyzer in terms of finding 3× more privacy-
sensitive dataflows, while being faster by 67×.

• Evaluate Turnstile’s run-time performance by com-

paring the end-to-end execution time of 27 Turnstile-

managed applications against their original versions.

Our results are as follows. First, Turnstile’s selective in-

strumentation significantly reduces the worst-case overhead

from 153.8% to 15.8% at input rate of 30 Hz, which is the

typical streaming rate of smart cameras. Further, selective

instrumentation enables 22 of the 27 applications to have

acceptable overheads, as compared to only 16 applications,

with exhaustive instrumentation. Finally, we observe that

the median performance overhead ranges from 0.2% to 26.8%

across the range of input rates from 2 to 1000 Hz, indicating

that Turnstile’s DIFT mechanism is generally efficient. Thus,

Turnstile is an efficient and dynamic IFC system that is both

platform-independent and non-invasive.

2 Background and Threat Model
Information Flow Control (IFC). In IFC, each object is

associated with a privacy label, and a set of privacy rules
define the hierarchy of the privacy labels. For example, A

rule stating that 𝑋 can flow to 𝑌 , hereby expressed as 𝑋 ⊑ 𝑌 ,

establishes that the privacy class𝑌 is “more private” than the

privacy class 𝑋 . The flow relation “⊑” applies transitively,
and thus it follows that, if 𝑌 ⊑ 𝑍 , then 𝑋 ⊑ 𝑍 , establishing

that the privacy class 𝑍 is the “most private” and𝑋 the “least

private”. Given this hierarchy, when there is information

flow from one object to another, we either allow or disallow

the flow based on the privacy labels of the objects involved.

For instance, if an object𝑚 has the privacy label 𝑌 (denoted

by𝑚 ↦→ 𝑌), and variables 𝑎 and 𝑏 have the privacy labels 𝑋

and 𝑍 respectively (𝑎 ↦→ 𝑋 and 𝑏 ↦→ 𝑍), then the assignment

𝑏 :=𝑚 would be allowed while 𝑎 :=𝑚 would be forbidden.

Additionally, privacy labels can be aggregated to produce

a compound privacy label. For instance, if 𝑎 ↦→ 𝑃 and 𝑏 ↦→ 𝑄 ,

then the privacy label of 𝑎 + 𝑏 is the compound label {𝑃,𝑄},
expressed as a set. Following Denning’s lattice model [19], we

2

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

derive the rules between compound labels such that 𝑋 ⊑ 𝑌

if 𝑋 ⊆ 𝑌 . Thus, 𝑃 ⊑ {𝑃,𝑄} and 𝑄 ⊑ {𝑃,𝑄}.
Threat Model. The goal of Turnstile is to assist a developer

to avoid unintentional mishandling of privacy-sensitive data.

Modern IoT applications are rarely built with a robust pri-

vacy control from the ground-up. Instead, they are composed

of first- and third-party components that are mostly privacy-

agnostic – i.e., not designed with a specific privacy policy

in mind. Turnstile enables the retrofitting of privacy con-

trols onto an arbitrary collection of such components. Thus,

the primary threat is the mishandling of data and privacy

violations by trusted-but-fallible application components.

We do not consider adversaries that have compromised

the integrity of the runtime environment or the network, or

those using side channels to leak private information. Our

threat model reflects the typical development environment

of an IoT application developer, and is similar to prior work

in this area [29, 32, 63].

In-Scope Threats.We do consider the following threats.

• Policy violation by third-party code. A third-party com-

ponent’s intended usage can cause privacy violations

when used in certain application contexts. For instance,

a component designed to communicate with a third-

party Software-as-a-Service (SaaS) endpoint located

in the USA might violate the GDPR [58] if processing

the data of persons in the EU.

• Unintentional data leakage. A first-party component

might unintentionally leak sensitive information across

different parts of an application, due to the complexity

of accounting for all the possible dataflows.

• Dynamic policy enforcement. The privacy implications

associated with a piece of data depends on its run-time

content and its application context. For example, a

frame captured by a smart camera might have privacy

implications that depend on: who is present in the

frame, which subjects have provided consent, for what

purpose the frame is used, where the frame is captured

and stored, etc.

Out-of-Scope Threats.Wedo not consider the following threats.

• Platform-level exploits. Vulnerabilities in the under-

lying platform, e.g., the Node.js runtime or the OS,

including those provided by a third-party Platform-as-

a-Service (PaaS) or Infrastructure-as-a-Service (IaaS)

provider. Turnstile does not defend against attacks

such as buffer overflows or code injection.

• Malicious dependencies. Third-party components that

are intentionally malicious – e.g., a trojanized library

designed to actively exfiltrate all data it can access.

• Network-level attacks. Adversaries who can monitor,

intercept, or modify network traffic, such as through

a man-in-the-middle attack.

• Side-channel attacks. Information leakage through side

channels – e.g., timing, control flow.

3 Motivating Example
Considering the characteristics of IoT applications and their

ecosystem, we identify three design constraints for an IoT-

friendly IFC system, which existing systems [15, 18, 31, 32,

63] do not satisfy. This underscores the need for a new IFC

system tailored to manage privacy in IoT applications. We

describe an example application to highlight the constraints.

Figure 1. An example smart access control system, showing

the software components and the platforms that host them.

Figure 1 illustrates the software components and platforms

involved in a smart access control system (SACS). This exam-

ple is an adaptation of an existing open-source application

[76], deployed across different runtime platforms [84]. This

application recognizes faces and activates smart door locks

to grant access only to authorized individuals. It also stores

images of recognized faces for record-keeping and sends an

email notification to administrators when specific persons

arrive at the door. This application has six software com-

ponents, distributed over six different runtime platforms.

By platform, we mean the combination of hardware and

software – virtual machine, operating system, and language

runtime – that enables the execution of the application soft-

ware. Three of these components are written (in JavaScript)

by the developer, while the other three are written by device

manufacturers and service providers (third parties).

• RTSPService (Real-Time Streaming Protocol) runs on

the smart camera at the user’s premises, delivering the

real-time video stream to downstream components. This

component is provided by the camera manufacturer and

cannot be modified by the developer.

• FaceRecognizer runs on an on-premises machine. It iden-

tifies faces in video frames, checks for matches against a

local database, and sends the frame along with the IDs of

any detected faces to downstream components. Figure 2a

shows a snippet of the component’s code. In line 3, a Scene
object is dynamically created from the raw frame, detect-

ing any faces in it. It then computes a human-readable

description (line 5), and sends a message to the Device-

Control component if the face is known. It also sends the

frame to the EmailSender and StorageService components

for further processing (line 13, 14).

3

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

1

2 socket.on("data", frame => {
3 const scene = analyzeVideoFrame(frame);
4 for (let person of scene.persons){
5 person.description =
6 person.action + " at " + scene.location;
7

8

9 if (person.employeeID){
10 deviceControl.send(person);
11 }
12 }
13 emailSender.send(scene);
14 storage.send(scene); });

(a) Original Code

1 const 𝜏 = (/* minified DIF Tracker and IFC policy */);
2 socket.on("data", frame => {
3 const scene = 𝜏.label(analyzeVideoFrame(frame), "Scene");
4 for (let person of scene.persons){
5 person.description =
6 𝜏.binaryOp("+",
7 𝜏.binaryOp("+", person.action, " at "),
8 scene.location);
9 if (person.employeeID){
10 𝜏.invoke(deviceControl, "send", [person]);
11 }
12 }
13 𝜏.invoke(emailSender, "send", [scene]);
14 𝜏.invoke(storage, "send", [scene]); });

(b) Privacy-managed Code

Figure 2. Simplified code snippet from the FaceRecognizer component of the smart access control system described in Section 3. It receives

a video frame, recognizes faces in the frame, and then sends the information to a downstream service based on the information extracted. (a)

shows the original version, and (b) shows the privacy-managed version, instrumented by Turnstile (instrumentation is shown in bold).

• StorageService runs on the cloud, and is a cloud-based

storage service (e.g., Amazon S3) that stores the received

frames in a virtual directory. This software is managed

by the SaaS provider, and interfaces with the rest of the

application via a HTTP-based API.

• DeviceControl runs on a runtime platform managed by a

PaaS provider (e.g., Heroku). Based on the face ID received,

it sends a command to the connected smart doorlocks

via MQTT, a popular publish-subscribe communication

protocol.

• MQTTClient runs on the smart doorlock on the user’s

premises, and is written by the doorlock device manufac-

turer. It actuates the doorlock based on the command it

receives via MQTT subscription.

• EmailSender runs on a serverless platform (e.g., AWS

Lambda). It sends an email to the administrators, including

the received frame as an attachment.

C1 Dynamic IFC with low overhead. In this applica-

tion, the privacy of the data – i.e., the video frame (line 3 in

Fig. 2a) – depends on the information extracted from it. For

instance, it might be legal to store the frame containing an

employee who has consented to it, but illegal to store that

of an unexpected visitor. Similarly, company policies might

permit a higher-ranking employee to receive emails about

a lower-ranking employee but not vice versa. Since privacy

implications vary with the information in a frame, privacy

labels cannot be applied statically. Instead, each frame must

be evaluated dynamically to determine its privacy label.

Static IFC methods, such as security-typed languages [56,

68, 73] or static dataflow/taint analysis [22, 23, 47] cannot

handle dynamic privacy requirements. On the other hand,

DIFT systems [18, 31, 32] can dynamically assign privacy

labels but often suffer from high run-time performance over-

heads, sometimes up to two orders of magnitude [31], which

makes them impractical. The main challenge, therefore, is to

dynamically manage privacy labels, while minimizing the

run-time overhead to make the IFC system practical.

C2 Platform-independence. We want the DIFT sys-

tem for IoT applications to be platform-independent – i.e., it

should not require the use of a special “DIFT-enabled” plat-

form. In other words, the DIFT system should be deployable

within the same infrastructure as the original application.

Many existing DIFT systems are implemented at the OS

level [44, 81, 82] to manage information flow at the bound-

aries of OS resources like processes and sockets. Alterna-

tively, there are also DIFT systems integrated into the lan-

guage runtime [18, 31, 32], to control information flow be-

tween application objects. We refer to DIFT systems incor-

porated into the runtime platform beneath the application

as platform-level DIFT systems. Platform-level DIFT has the

advantage that it requires minimal or no modifications to

the application.

However, it is challenging to adopt platform-level DIFT for

the IoT domain. In the example, the DeviceControl compo-

nent runs on a cloud-managed runtime, and EmailSender
is deployed as a serverless function, both managed by third

parties. To use platform-level DIFT, all PaaS providers must

universally adopt the same DIFT mechanism, which is dif-

ficult to achieve in the IoT ecosystem. Therefore, an IoT-

friendly DIFT system must be platform-independent.

C3 Non-invasiveness. Platform-independent DIFT can

be provided in a new language [43] that compiles to an exe-

cutable format compatible with the existing runtime environ-

ment. Alternatively, it can be offered as a user-level library

[15], providing abstractions for controlling the information

flow. We refer to such systems as application-level DIFT sys-
tems. However, existing application-level DIFT systems are

invasive, either requiring the application to be rewritten in a

new language or requiring significant code modifications.

In the example application, if we had to use a new lan-

guage or use a special API, then we would have to rewrite

4

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

the three components FaceRecognizer, DeviceControl,
and EmailSender. Additionally, all three components im-

port other third-party modules, which themselves depend on

many other modules. All those third-party modules would

have to be rewritten, which is impractical. Therefore, the

DIFT system should be non-invasive, allowing the existing
application code and third-party library code to be used.

Design Goals. For IoT applications, the above three con-

straints are amplified in tandem, and a practical IFC system

should aim to satisfy all three. Therefore, we propose Turn-

stile, an IFC system which has three design goals: C1 have

low overhead during run-time, C2 be deployable without

changing the runtime platforms, and C3 integrate with

existing code without modification efforts.

4 Approach
The key innovation of Turnstile

2
lies in its combination of

dataflow-aware selective code instrumentation and the self-
contained DIFT system embedded into the application code.

Turnstile integrates both static and dynamic IFC techniques

in a hybrid approach to track only the potentially privacy-

sensitive dataflows. This hybrid approach enhances coverage

compared to using static analysis alone, and significantly re-

duces run-time overhead compared to tracking all dataflows.

Static IFC. Turnstile performs a context-sensitive static taint

analysis to identify code paths that are potentially privacy-
sensitive (§ 4.2). Once identified, only those objects that are

handled along these sensitive code paths are tracked by

the runtime DIFT system. By selective tracking, Turnstile

avoids the overhead of tracking all objects in the application,

thereby satisfying the efficiency constraint C1 .

Dynamic IFC. The Turnstile DIFT system (§ 4.4) is designed

as a portable, self-contained system that has no dependencies

on special runtime APIs, platform features, or third-party

software, and is fused transparently into the application. As

a result, the DIFT-enabled application runs on the same plat-

form as the original application, thus satisfying the platform-

independence constraint C2 . Turnstile’s DIFT system is

integrated through automated code instrumentation. Turn-

stile takes the original application source code and produces

a DIFT-enabled version of the application. This approach

enables IFC on existing codebases without requiring an end-

to-end rewrite of the application and its dependencies, thus

satisfying the non-invasiveness constraint C3 .

4.1 System Architecture and Workflow
We provide a birds-eye view of Turnstile from a developer’s

perspective, by describing how a developer configures and

deploys an application using Turnstile. Figure 3 illustrates

the end-to-end workflow. Note that Turnstile works on appli-

cations written in JavaScript, which is the language of choice

2
Code available at:

https://github.com/DependableSystemsLab/Turnstile-EuroSys26

for several mainstream IoT frameworks [2, 4, 27]. However,

Turnstile’s approach can also be extended to other languages.

Figure 3. Application configuration and deployment work-

flow showing the three key components of Turnstile

Prior to deployment, the developer uses the Dataflow An-
alyzer (§ 4.2, 1 in Fig. 3) to identify privacy-sensitive source

and sink objects in the application code and any third-party

code used. For each privacy-sensitive source and sink, the

developer must provide a privacy label function, which pro-

duces the privacy label of a given object during run-time.

Additionally, the developer must define the hierarchy of la-

bels in the form of privacy rules (§ 2). Collectively, we refer
to the set of privacy labels and rules as the IFC policy (Fig.

4). The IFC policy is the only part that requires active input

from the developer when using Turnstile, and is written once

for the whole application (discussed in § 4.3 and § 4.6).

Based on the IFC policy and the dataflow analysis, the

Code Instrumentor (§ 4.3, 2 in Fig. 3) automatically produces

a privacy-managed version of the application, with the nec-

essary instrumentations added for controlling information

flow at run-time. It injects various API calls to the Inlined
Dynamic Information Flow Tracker (DIF Tracker) (§ 4.4, 3

in Fig. 3), selectively along the privacy-sensitive code paths

identified by the Dataflow Analyzer.

The developer then deploys the instrumented application

– now managed by the DIF Tracker during run-time – on

the same runtime infrastructure as the original application.

The DIF Tracker operates within the application, tracks the

privacy labels of different objects in the program during

run-time, and flags any violations of the IFC policy.

4.2 Dataflow Analyzer
The Dataflow Analyzer identifies the parts of the code that
might potentially handle privacy-sensitive data. To identify
privacy-sensitive code paths, we perform a static taint anal-

ysis, targeting all Input-Output (I/O)-related POSIX APIs as

taint sources and sinks. For example, an object created upon

reading from a file or a socket is a source object. Similarly, an

object passed to a file-write or a socket-write is a sink object.
We target the POSIX API, because from the perspective of

the application, that is where data enters and leaves. I/O

5

https://github.com/DependableSystemsLab/Turnstile-EuroSys26

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

interfaces are, in fact, common taint sources and sinks in

most security-focused taint analyses [52, 57]. However, in

contrast to prior work that targets specific function calls or

I/O resources [47, 77, 85], our strategy is to cast a wide net

and consider all POSIX interfaces as taint targets, to account

for the wide variety of I/O access patterns in IoT applications.

We developed our own static taint analyzer instead of

leveraging existing tools such as CodeQL [34] or ODGen

[47], for three main reasons. First, existing tools did not per-

form an accurate, context-sensitive inter-procedural analysis.

Second, except for CodeQL, most tools had pre-defined taint

sources and sinks that were difficult to modify to capture all

POSIX interfaces. Third, existing tools were often slow, with

some taking tens of seconds to complete the analysis. To over-

come these limitations, we optimized the dependence graph

construction and taint tracking processes, and incorporated

a richer context-sensitive inter-procedural analysis, using

domain knowledge of commonly used JavaScript libraries.

4.3 Code Instrumentor
The Code Instrumentor selectively injects the appropriate DIF
Tracker API calls along the code path between the source

and sink objects in the application. Figures 2a and 2b show

the original and the instrumented code for the example appli-

cation, respectively. Starting from the scene object in line

3, Turnstile instruments only the code along the privacy-

sensitive path previously traced by the Dataflow Analyzer. It

injects API calls into expressions involving dataflows, such

as assignments, variable declarations, and function calls. We

summarize the relevant API methods in Table 1. During

run-time, the instrumented application invokes these API

methods to interact with the DIF Tracker (§ 4.4). For exam-

ple, a call to the label(target, labeller) function is

injected for each object to be managed. The DIF Tracker

itself (i.e., the implementation of the API) is also injected in

the application code (line 1 in Fig. 2b), along with the IFC

policy provided by the developer.

1 { labellers: {
2 Scene: { persons: { $map: item =>
3 (item.employeeID ? "employee" : "customer") } } },
4 rules: ["employee -> customer",
5 "customer -> internal"],
6 injections: [
7 { line: 2, object: "scene", labeller: "Scene" }] }

Figure 4. Example of an IFC policy, written for the example appli-

cation in Figure 2

The API calls injected into the application are parameter-

ized by the IFC policy provided by the developer (sample

shown in Fig. 4). It consists of a set of label functions, a set of
privacy rules, and a mapping between privacy-sensitive ob-

jects and the label functions. A label function 𝑙 (𝑥) : 𝑉 → 𝐿

returns a privacy label 𝑝 ∈ 𝐿 based on the current value of

object 𝑥 ∈ 𝑉 , where𝑉 is the set of all run-time objects and 𝐿

is the set of all privacy labels. A mapping 𝑛 ↦→ 𝑙 (𝑥) between
an object 𝑛 and 𝑙 (𝑥) indicates the label function to be used

for the given object 𝑛.3 During run-time, when the label
function is invoked, Turnstile evaluates the privacy label

of each managed object 𝑣 by invoking the user-defined la-

bel function 𝑙 (𝑣) associated with 𝑣 . Thus, Turnstile supports

value-dependent privacy labels [86], i.e. labels that are dy-

namically computed from the run-time values of the objects

to be labelled. If an object needs to be declassified or endorsed
to some privacy label 𝑄 , the developer can provide a label

function that always returns 𝑄 regardless of the given 𝑣 .

To determine whether a flow is allowed between two la-

belled objects, Turnstile builds a directed acyclic graph (DAG)

that represents the hierarchy of privacy labels based on the

set of privacy rules defined in the IFC policy, such as:

employee → customer → internal

In this DAG, each label is a node, and the direction of the

edges indicates the hierarchy between labels, where the

downstream node indicates a higher privacy level. If a cycle

is detected while constructing the DAG, the IFC policy is

considered invalid, and Turnstile informs the developer.

4.4 Inlined Dynamic Information Flow Tracker
After instrumentation, the application initializes aDIF Tracker
instance at startup (line 1, Fig. 2b). The DIF Tracker dynam-

ically assigns privacy labels to the managed objects based

on their values at run-time, and then tracks the changes and

transfers of these labels as the objects are processed by the

application. Whenever a privacy-managed object flows into

a privacy-managed sink, the DIF Trackers checks the privacy

rules and either allows or disallows the flow. We discuss the

DIF Tracker’s three main functionalities below.

Dynamically attaching privacy labels. As shown in Fig-

ure 2b, the instrumented code invokes theDIF Trackermethod

label for the scene object to evaluate its value-dependent

privacy label. It uses the label function "Scene" provided

in line 2 of the IFC policy in Figure 4. The mapping in line

7 indicates that this label function should be applied to the

scene object in line 3 of the original code in Figure 2a. The

inner label function $map (line 2 in Fig. 4) is applied to each

element of the scene.persons array, returning a privacy

label for each element based on its value. In our example

application, the privacy label would be either "employee"
or "customer" depending on whether the given element

in scene.persons has an employeeID property.

Tracking privacy-sensitive information flow. To track

the movement of the privacy labels of the objects, the DIF

Tracker maintains a global map of every tracked object and

their privacy labels. For reference-type objects, this is trivial;

3
Strictly speaking, 𝑛 is a node in the abstract syntax tree (AST) representa-

tion of the source code, which is a syntactic element, not a run-time object.

We refer to it as an object for ease of discussion.

6

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Method Description

label(target, labeller)
Evaluate and attach the privacy label to the given target object, using the given

labeller function.

binaryOp(operator, left, right)
Perform a binary operation between the two objects left and right, and assign

a compound label to the resulting object.

check(data, receiver)
Check whether the privacy rules allow the given data to be passed to the receiver,
by inspecting the privacy labels attached to data and receiver respectively.

invoke(target, func, args)
Check whether the given function arguments args can be passed into the function

func according to the privacy rules, then invoke the function func with the arguments

args if the rules allow, and finally assign a compound label to the returned value.

Table 1. Description of the main API methods of the runtime DIFT system of Turnstile. Other methods are omitted.

𝑣 ∈ V, 𝑃 ∈ P(L), −→ ⊆ V × (V × P(L))

(label)

𝑙 (𝑣) = 𝑃

label(𝑣, 𝑙) −→ 𝑣 ↦→ 𝑃

(binaryOp)

𝑣1 ⊙ 𝑣2 = 𝑣3 𝑣1 ↦→ 𝑃1 𝑣2 ↦→ 𝑃2

𝑣1 ⊙ 𝑣2 −→ 𝑣3 ↦→ 𝑃1 ∪ 𝑃2

(assignment)

𝑣2 ↦→ 𝑃2

𝑣1 := 𝑣2 −→ 𝑣1 ↦→ 𝑃2

(invoke)

𝑣1 (𝑣2, 𝑣3) = 𝑣4 𝑣2 ↦→ 𝑃2 𝑣3 ↦→ 𝑃3

𝑣1 (𝑣2, 𝑣3) −→ 𝑣4 ↦→ 𝑃2 ∪ 𝑃3

Figure 5. Semantic rules for some of the expressions that

create or manipulate a privacy label.

we can simply use the object itself as the key in the map.

However, the problem is tricky for value-types, as different

value-type instances with the same value would map to the

same privacy label, even though the two instances repre-

sent two different pieces of information. Therefore, Turnstile

wraps value-types in a container object. The wrapped values

are unwrapped upon writing to a sink object, so that the

values are available natively to external interfaces receiving

the object from the application. While we implemented this

in JavaScript, the same issue exists in other languages that

distinguish between value-types and reference-types (e.g.,

Python, C#, Java), and the same solution applies to them.

Figure 5 shows the semantics of how labels are tracked

by Turnstile. When the value of an object is computed from

the values of other objects, the DIF Tracker determines the

privacy label of the derived object based on the labels of

the dependent objects. For example, when the assignment

expression in line 5 in Figure 2b is evaluated, the resulting pri-

vacy label of person.description is the compound label

of the labels of person.action and scene.location. It
handles arithmetic operations using the binaryOp method

(Table 1), as the privacy label of the result is derived from

the arguments. Similarly, privacy labels are compounded in

the invoke method, when a function is invoked. In other

types of expressions involving a dataflow i.e., assignment,

variable declarations, the operation over the privacy labels

mirrors the operations over the objects.

Support for dynamic typing. A unique challenge in tracking

objects in a dynamic language such as JavaScript is that

properties can be dynamically created and deleted during

run-time. Tracking the labels of properties that are created

during run-time is not possible through static code instru-

mentation. We address this problem by using the Proxy con-

struct available in JavaScript. The Proxy construct allows

us to intercept property accesses before object properties

are actually accessed. Turnstile automatically wraps every

tracked object with a Proxy, so that it can track properties

that are created or deleted during run-time.

Restricting policy-violating information flows. To en-

sure that a dataflow complies with the privacy rules, the DIF

Tracker examines the privacy labels of the objects involved

in the dataflow and checkswhether a privacy rule permits the

flow. For instance, in the expression storage.send(scene)
(line 14 in Fig. 2b), before invoking storage.send, the DIF
Tracker verifies that the dataflow from scene to storage
.send is allowed based on their privacy labels at run-time.

To query the existence of a rule, the DIF Tracker traverses

the DAG representing the privacy label hierarchy, discussed

in Section 4.3. This DAG is static, and is computed once upon

initializing the DIF Tracker. When comparing two labels, the

DIF Tracker traverses the DAG to determine if there is a path

between them. If no path is found, or if the receiving object

has a lower-level privacy label, the flow is forbidden, and

the DIF Tracker signals a privacy violation. Otherwise, it is

allowed. The initial check for a pair of labels has a time com-

plexity of 𝑂 (𝑉 + 𝐸) and space complexity of 𝑂 (𝑉), where 𝑉
is the number of labels (vertices) and 𝐸 is the number of rules

(edges). Subsequently, the result is cached, thus reducing the

time and space complexity of subsequent checks to 𝑂 (1).

4.5 Support for JavaScript Features
Turnstile supports the ES6 (ECMAScript 2015) [35] syn-

tax, including class declarations, spread expressions (e.g.,

...args), and arrow functions. By Turnstile’s coverage of
7

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

JavaScript, we mean the extent to which Turnstile can trace

the dataflow over different types of JavaScript expressions

and code patterns during the static taint analysis.

Turnstile covers dynamic function calls and dynamic prop-

erty access that uses the bracket syntax (e.g., foo[x](y))
through sound over-approximation [37]. When Turnstile en-

counters such dynamic property access, it traces backwards

to find all the places where foo[?] was assigned regard-

less of the actual value of x. Dataflows across higher-order
function calls and closures (e.g., x => (y => x + y)) are
tracked through context-sensitive points-to analysis [37].

When a higher-order function is called to create a closure,

Turnstile tracks both the higher-order function used to create

the closure, and the objects captured by the closure. Turnstile

covers Promise objects that are created using its constructor
new Promise(callback). The created Promise object is

treated as the returned value of the callback. The same idea

applies to await expressions – i.e., await foo is treated as

foo for the sake of dataflow analysis. However, we do not

currently cover chained Promises, and we have not encoun-
tered them in the applications we studied. In future work,

we can incorporate Functional Dependency Graphs (FDGs)

[40] to cover chained Promises. Turnstile does not cover
eval because modern JavaScript discourages its use. None

of the applications we studied (§ 6) uses eval.

4.6 Limitations and Discussion
Implicit Flows. It is important to track implicit flows, as
control flow logic can be used as side channels to leak private

information. A dynamic language such as JavaScript allows

complex control flows involving dynamic function creation

and event-triggered function invocation.

Turnstile currently tracks only explicit flows, similarly to

several prior work on JavaScript taint analysis [10, 41, 71].

More specifically, Turnstile tracks explicit flows along all

branches of conditional statements, and along all control

flow paths that depend on a dynamic value. What Turnstile

does not track is the leakage of information through observ-

ing which branch in the control flow logic was taken – e.g.,

an adversary deducing whether an authorized person was

in a frame by observing whether the door opened. Track-

ing implicit flows requires significant improvements to the

dataflow analysis and the DIFT mechanism. In future work,

we can incorporate various techniques for tracking implicit

flows as demonstrated in prior work [20, 31, 36].

Writing and Maintaining IFC Policy. In Turnstile, devel-

oper input is required only in writing the IFC policy. We con-

sider the cost of writing an IFC policy to be lower than that

of rewriting applications or maintaining an infrastructure of

DIFT platforms. Generally, one label function is associated

with one type. Therefore, a developer writes as many label

functions as there are number of object types found at the

privacy-sensitive sources and sinks. Expressing the privacy

rules involves writing a small DAG with as many nodes

as there are privacy labels. Mapping the label functions to

different sources and sinks is straightforward, as the code

locations are already identified by the Dataflow Analyzer.

As the privacy requirements of an application evolve, the

only part that the developer must maintain with respect to

Turnstile is the IFC policy. The effort required to maintain

the IFC policy depends on the change in the application.

There are three possibilities. (1) If there is a change in the

application code, but no changes in the privacy of data han-

dled, no changes would be required to the IFC policy. Only

the code would be re-instrumented by Turnstile, which is

automated. (2) If a new source or sink is introduced, the de-

veloper might need to define a new label function or assign

an existing label function to the new source or sink. This

involves writing a single label function, and indicating the

new injection point. (3) If there is a change in the privacy

implication of the data handled (e.g. new company policy

now allows "vendor" data to be stored), then new privacy

labels and rules might need to be introduced.

5 Case Study: Network Video Recorder
Case Study Objective. We used Turnstile to manage the

privacy of an application developed in Node-RED [27], a pop-

ular IoT framework based on the flow-based programming

model [54]. Our goal was to assess the practicality of using

Turnstile from the developer’s perspective.

Node-RED enables a developer to build an application by

connecting together a set of modular components (referred

to as “nodes”) as a DAG (referred to as a “flow”). A Node-

RED developer typically imports third-party nodes, which

imposes the non-invasiveness constraint. Further, Node-RED

applications are often deployed on third-party managed run-

times, which imposes the platform-independence constraint.

Thus, we can assess Turnstile’s effectiveness in satisfying

both design constraints in this case study. While we have fo-

cused on Node-RED for this study, Turnstile is independent

of Node-RED, and can be applied to other frameworks.

Target Application. We used a Node-RED flow that was

publicly available from their official website – a Network
Video Recorder (NVR) [76], which is similar to the example

application we introduced in Section 3. This flow captures

footage from smart cameras, stores it in a database, and sends

images via email. To add more dynamism, we included an

additional node to perform facial recognition on the image

data captured from the cameras. The face recognition node

was also sourced from a third-party repository [49].

The four main parts of the NVR flow are:

1. Frame Capture captures frames from video input

sources, such as RTSP streams or video files.

2. Face Recognition uses the Deepstack Face Recog-

nition API [49] to recognize pre-registered faces in a

given frame, and attaches the face IDs identified.

8

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

1 function faceRecognition(msg, config, server) {
2 /* omitted */
3 let original = msg.frame;
4 deepstack.faceRecognition(original, server, config.

confidence)
5 .then(async result => {
6 msg.payload = result.predictions;
7 /* omitted */
8 resolve(msg); }); }

(a) Snippet from the Face Recognition node

1 this.on("input", function(msg, send, done){
2 /* omitted */
3 let sendopts = {
4 to: msg.to,
5 attachments: msg.payload
6 };
7 smtpTransport.sendMail(sendopts, function(error, info){
8 /* omitted */ }); });

(b) Snippet from the Email Notification node

Figure 6. Face Recognition and Email Notification nodes in NVR,

showing only the relevant parts. Label injection is shown in bold.

3. Frame Storage stores the frames processed by the

face recognition node in an SQLite database.

4. Email Notification sends a set of frames and the

associated faces IDs, to one or more recipients.

The NVR flow requires DIFT due to the dynamism present

in three places. First, different frames can have different

privacy labels depending on the faces captured. Second, the

legality of storing a frame can depend on the geographic

location of the database server. Third, the email recipients

can have varying permission levels to view different frames.

Using Turnstile as a developer.Assume that the NVR flow

is used in the context of worksite security by a large corpora-

tion. The faces of employees would be captured, stored, and

sent to different employees in managerial positions. There

are two types of privacy control we want to enforce. First,

the faces of European Union (EU) residents are saved only

in databases located in the EU, to be GDPR-compliant [58].

Second, no employee with a lower rank receives emails con-

taining the faces of employees with a higher rank.

The developer must express the above two requirements

in the IFC policy (Fig. 7), describing how to label different

objects and the hierarchy of different privacy labels. In NVR,

three types of objects must be labeled: a the frame contain-

ing a face (source), b the function for storing the frame

(sink), and c the function for sending emails (sink).

Figure 6a shows the relevant parts of the Face Recognition

node where a label is assigned to the captured frame. In line 4,

themethod faceRecognition is called, which returns a list
of recognized faces asynchronously as the argument result
in the callback function in line 5. The result object contains
a property predictions, which is an array of objects with

a field userid. Thus, the privacy label of the predictions

1 { labellers: {
2 onRecognize: { predictions: {
3 $map: item => {
4 let employee = getEmployeeById(item.userid);
5 return [employee.region, employee.level];
6 } } },
7 mailer: { sendMail: {
8 $invoke: (object, args) => {
9 return getEmployeeByEmail(args[0].to).level;
10 } } },
11 nodeRegion: { mydb: node => node.settings.region } },
12 rules: ["US -> EU", "L1 -> L2", "L2 -> L3"],
13 injections: [
14 { file: "face-recognition.js", line: 5,
15 object: "result", labeller: "onRecognize" },
16 { file: "email-notification.js", line: 7,
17 object: "smtpTransport", labeller: "mailer" },
18 { file: "frame-storage.js", line: 44,
19 object: "node", labeller: "nodeRegion" }] }

Figure 7. Example of an IFC policy for the NVR flow

array depends on the userid of the objects in it. The label

function we use to assign label to the predictions array

is shown in line 3 in the IFC policy (Fig. 7). The function is

invoked on each of the elements of the predictions array.

It looks up the employee data using the given userid, and
returns a label set containing the region (either US or EU) and
the employee level (one of L1, L2, and L3). The hierarchy
of labels is established in line 12 in the IFC policy (Fig. 7),

indicating that the label EU has a higher privacy level than

the label US. L3 is higher than L2, and L2 is higher than L1.
Figure 6b shows parts of the Email Notification node,

where a label is assigned to the function for sending an email.

The sendMail function in line 7 is a sink, and the argument

sendopts contains the captured frame in the attachments
property. The label of the sendMail function should be de-

termined dynamically based on the recipient of the email,

which is provided in the to property of the sendopts object.
Based on the label of the sendMail function at the time of

invocation, and the label of the attachments object, Turn-

stile decides to allow or disallow the function invocation. For

example, if the attachments object has the label L3, and
the recipient is an employee of level L2, Turnstile should
prevent the email from being sent. Line 8 in the IFC policy

(Fig. 7) shows the label function used to assign label to the

sendMail function. The label function is called when the

sendMail function is invoked, and returns a label derived

from the argument passed, which is the sendopts object. It

looks up the employee data of the recipient using the email

address, and returns the employee level as the label. We omit

the steps for the Frame Storage node as they are similar.

We use the Code Instrumentor to instrument the source

code of all the nodes in the flow. The instrumented code is

then deployed on the same infrastructure as the original.

9

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

6 Evaluation
Evaluation Objective. We evaluated Turnstile in two parts

– 1 ability to identify the privacy-sensitive code paths in

an application’s code. 2 run-time performance overhead of

Turnstile’s DIFT mechanism. Therefore, in our evaluation,

we aimed to answer the following research questions (RQ):

• RQ1. How effective is Turnstile in identifying privacy-

sensitive paths?

• RQ2. Does Turnstile’s selective tracking significantly

reduce the run-time overhead?

• RQ3. What is the run-time overhead of Turnstile?

In Part 1, we answer RQ1 by comparing Turnstile’s perfor-

mance against an industry-standard static analysis engine

called CodeQL [34], used by Github. In Part 2, we answer RQ2

and RQ3 by comparing the execution time of the privacy-

managed applications with those of the original versions.

Target Applications. In both parts of the evaluation, we

used 61 Node-RED applications we found on Github as the

experimental targets. We crawled Github and searched for

potential target applications by looking up code signatures

that are characteristic of each of the popular IoT frameworks.

For example, to find Node-RED applications, we searched

for “RED.nodes.createNode”, which all Node-RED appli-

cations must call. We considered the following popular IoT

frameworks: Node-RED [27], Azure IoT [3], HomeBridge [5],

OpenHAB [6], SmartThings [4], and AWS Greengrass [2].

Table 2 shows the results of our search.

Framework Search Results Number of Repositories
Node-RED [27] 2676 677 (58.9%)

Azure IoT [3] 727 357 (31.1%)

HomeBridge [5] 171 57 (5.0%)

OpenHAB [6] 70 14 (1.2%)

SmartThings [4] 42 29 (2.5%)

AWS Greengrass [2] 27 15 (1.3%)

Table 2.Number of publicly available repositories on Github found

for popular IoT frameworks.

We found that Node-RED was the most popular IoT frame-

work, accounting for 58.9% of the total of 1,149 repositories

found, which is almost twice as many repositories as Azure

IoT, the second most popular framework. Therefore, we de-

cided to target JavaScript applications written for Node-RED.

Out of 677 Node-RED repositories, we selected 61 that had

the most number of “stargazers” and “watchers”, which indi-

cate their maturity and popularity.

6.1 Part 1: Static Code Path Selection
In this part, we evaluate Turnstile’s effectiveness in identify-

ing privacy-sensitive code paths in the target applications.

Methodology. For each target application, we perform the

dataflow analysis using Turnstile, and record the number of

privacy-sensitive source objects, sink objects, distinct code

paths between source and sink objects. We run the same

analysis using CodeQL [34]. We compare against CodeQL

as it satisfied the following criteria: 1 work with arbitrary

JavaScript applications with minimal effort, 2 support cus-

tomizing taint targets, and 3 produce results that explicitly

map the tainted dataflow paths back to the code locations.

We considered other tools such as ODGen [47], NodeMedic

[10], and PDG-JS [23], but they did not satisfy these criteria.

CodeQL Query Construction. To use CodeQL’s taint track-

ing feature, we wrote a custom CodeQL query that performs

the same taint analysis as Turnstile’s. Specifically, we ex-

tendedCodeQL’s TaintTracking::Configuration class
to define a custom taint analysis configuration equivalent to

that used in Turnstile, and defined custom DataFlow::Node
classes that select the taint sources and sinks using the same

selection criteria as Turnstile’s. Figures 8 and 9 shows parts

of our implementation for the two custom classes used for

performing the taint analysis with CodeQL.

1 class TrackDownstreamConfiguration extends TaintTracking::
Configuration {

2 TrackDownstreamConfiguration() { this = "
TrackDownstreamConfiguration" }

3

4 override predicate isSource(DataFlow::Node source) {
5 source instanceof IOSource
6 or source instanceof ExpressSource
7 or source instanceof NodeRedSource
8 }
9

10 override predicate isSink(DataFlow::Node sink) {
11 sink instanceof IOSink
12 or sink instanceof ExpressSink
13 or sink instanceof NodeRedSink
14 }
15 }
16

17 from TrackDownstreamConfiguration dataflow, DataFlow::
PathNode source, DataFlow::PathNode sink

18 where dataflow.hasFlowPath(source, sink)
19 select source, source, sink, "IO-to-IO Source"

Figure 8. One of the taint tracking configurations used to cus-

tomize the CodeQL taint tracking query.

Figure 8 shows the taint tracking configuration we de-

fined by extending the CodeQL TaintTracking::Config-
uration class. This is the “main” query file that we run

using CodeQL. The purpose of this class is to define the

taint sources and sinks. We achieve this by overriding the

predicates isSource and isSink, shown in lines 4 and 10,

respectively. The isSource and isSink predicates are eval-
uated for each node in the abstract syntax tree (AST) of

the source code. The predicate logic is straightforward –

it checks whether the given AST node matches the node

type that we have defined. For example, isSource checks

whether the given AST node is of type IOSource, Express-
Source, or NodeRedSource, which are custom nodes that

we have defined. Lines 17 - 19 express the actual query to

10

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

1 class IOSource extends DataFlow::Node {
2 IOSource() {
3 this = DataFlow::globalVarRef("process").

getAPropertyRead("stdin").getAMemberCall("on").
getCallback(1).getParameter(0)

4 or this = DataFlow::moduleMember("fs", "createReadStream
").getACall().getAMemberCall("on").getCallback(1).
getParameter(0)

5 or this = DataFlow::moduleMember("child_process", "exec"
).getACall().getCallback(1).getParameter(1)

6 or this = DataFlow::moduleMember("net", "connect").
getACall().getAMemberCall("on").getCallback(1).
getParameter(0)

7 /* omitted */
8 }
9 }
10

11 class IOSink extends DataFlow::Node { /* omitted */ }
12 /* omitted */

Figure 9. Snippet from the custom CodeQL library that defines

different taint sources and sinks

be made, which tells CodeQL to perform the taint analysis

using the given configuration.

We defined the custom AST nodes in a CodeQL library as

shown in Figure 9, which shows a part of the implemen-

tation of the IOSource node. We extended the CodeQL

DataFlow::Node class to define a custom node. In the body

of the constructor in line 2, we defined the selection criteria.

Figure 9 shows four selection criteria as examples, but we

have defined a total of 14 selectors for IOSource, which cov-
ered the range of possible sources in the applications we stud-

ied
4
. Similarly, we have defined five other classes: IOSink,

ExpressSource, ExpressSink, NodeRedSource, and

NodeRedSink. The Express* and NodeRed* classes cover

Express.js [26] and Node-RED respectively, which are com-

monly used frameworks.

Establishing ground-truth. Finally, we manually identified

the privacy-sensitive code paths in all 61 target applications

to compare them against those found by both Turnstile and

CodeQL. Manual inspection was needed because there was

no ground truth listing the privacy-sensitive code paths in

these third-party applications, and we found no automated

tool for identifying them.

Code Path Detection. Figure 10 shows the distribution of

the number of privacy-sensitive code paths found by Turn-

stile and CodeQL in the 61 Node-RED applications, compared

against the number of code paths found manually, indicated

by the green line. Out of the 285 privacy-sensitive code paths

found manually across 61 applications, Turnstile was able

to identify more than three times as many code paths as

CodeQL, finding a total of 190, compared to 52 found by Cod-

eQL. We have manually verified that the code paths found

4
For complete coverage over Node.js built-in libraries, additional selectors

need to be defined.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Applications

0
2
4
6
8
10
12
14
16
18
20

N
um

b
er

of
P
ri
va
cy
-s
en
si
ti
ve

D
at
afl
ow

s
F
ou
nd

Turnstile CodeQL Manual

Figure 10. Distribution of the number of privacy-sensitive

dataflows detected per application, by Turnstile and CodeQL.

by both solutions were correctly identified – i.e., the code

paths indeed had a data flow from or to an I/O resource.

There were five applications for which both Turnstile and

CodeQL identified code paths. Out of the five applications,

Turnstile reported more code paths in three applications

and CodeQL reported more paths in another application.

In the fifth application, both Turnstile and CodeQL identi-

fied exactly the same code paths. There were 22 applications
for which Turnstile found privacy-sensitive code paths but
CodeQL did not find any. This is due to Turnstile’s better sup-
port for type-sensitive interprocedural analysis compared

to CodeQL. Although JavaScript is dynamically typed, we

implemented type-inference mechanisms to deduce the type

of the arguments passed dynamically to a function invoca-

tion. As a result, Turnstile is able to track privacy-sensitive

dataflows more accurately across function calls. There were

two applications in which CodeQL outperformed Turnstile.

We investigated those two applications and found that Cod-

eQL’s analysis does better due to Turnstile’s inability to track

reflective code through the JavaScript prototype chain.

Further, there were 32 applications for which neither Turn-

stile nor CodeQL found privacy-sensitive code paths. Of

these, 6 applications actually had no privacy-sensitive code

paths, and 26 applications had one or more privacy-sensitive

code paths, which both systems failed to detect. The most

common pattern missed was when the privacy-sensitive data

were exchanged through special framework APIs such as

Node-RED’s RED.httpNode, which is an HTTP server that

handles privacy-sensitive objects such as HttpRequest and

HttpResponse. Note that it cannot be statically inferred

that RED.httpNode is indeed an HTTP server, since it is

assigned dynamically by the Node-RED runtime. Thus, both

tools missed dataflows involving RED.httpNode. To detect

this kind of dataflows, additional domain-knowledge about

framework APIs needs to be incorporated into the tools.

Computation Time.We measured the time taken to ana-

lyze an application and observed that Turnstile is an order

of magnitude (∼67x) faster than CodeQL, completing an

analysis in 325 ms on average, and 1578 ms for the nlp-js
application in the worst case. In contrast, CodeQL completed

11

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

an analysis in 59532 ms (59.5 seconds) on average, taking up

to 724102 ms (12 minutes) for the modbus application.

The large difference between the processing times is due

to CodeQL accounting for more types of object dependence

than Turnstile, and compiling the dependence graph into

an intermediate representation (IR). CodeQL is a general-

purpose, polyglot analysis engine, which has more use cases

than the Turnstile Dataflow Analyzer. On the other hand,

Turnstile DataflowAnalyzer is a specialized tool that we built

to detect specific dataflows that potentially violate privacy.

Turnstile does not need to generate an IR and hence is faster.

Summary.We evaluate Turnstile by comparing it against an

industry-standard analysis tool, CodeQL. RQ1 Our evalu-

ation shows that Turnstile is more effective than CodeQL at

identifying the privacy-sensitive dataflows, both in terms of
the number of code paths found and the time for the analysis.

6.2 Part 2: Run-time Performance Overhead
In this part, we assess the run-time overhead of Turnstile’s

DIFTmechanism, once the application has been instrumented.

Out of the 61 applications we used in Part 1, we used only

those 27 applications in which Turnstile identified at least

one privacy-sensitive dataflow for this part, since Turnstile

enables DIFT selectively only along those dataflows.

Methodology. For each application, we feed in an input

workload containing 1000 messages. To emulate the contin-

uous, periodic real-time processing that is characteristic of

IoT applications, the messages are streamed in periodically

at a fixed rate of 𝑓 Hz (messages per second). We feed the

same input stream into three different versions of an ap-

plication: 1 unmanaged, 2 exhaustively-managed, and 3

selectively-managed. The unmanaged version is the original

application, which is the baseline we compare against. The

exhaustively-managed version has all the code paths instru-

mented, and the selectively-managed version has only the

privacy-sensitive code paths instrumented. We measure the

time 𝑡 taken to process all the messages in the input stream

for each of the 27 applications, when running the original

(𝑡𝑜𝑔), exhaustively-managed, and selectively-managed ver-

sions. We report the results in terms of the relative run-time

(𝑡/𝑡𝑜𝑔), which we obtained as an average over 10 repeated

runs, as the wall-clock execution time varies across appli-

cations. We consider a range of input rates (𝑓), from 2 Hz

to 1000 Hz; this covers a wide range of typical IoT devices,

from smart meters [80] to high frame rate cameras [42].

Workload and Privacy Policy Preparation. The 27 target
applications varied in terms of the kind of data they pro-

cessed, which means they have different privacy demands

in the real world. Therefore, to compare the applications

fairly, we systematically generated the workload and the IFC

policies. For each application, we inspected the application’s

Node-RED metadata files as well as the application code to

understand the structure of the input data, and generated

1
0

1
0

0

1
0

0
02 3 4 5 6 7 8 9

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0
7

0
0

8
0

0
9

0
0

Input Rate (Hz)

1

10

0

2

3

4

5
6
7
8
9

20

R
e

la
ti
ve

 R
u

n
-t

im
e

3
0

 H
z

2
5

0
 H

zSelectively-managed (Median)

Selectively-managed

Exhaustively-managed (Median)

Exhaustively-managed

Figure 11. Relative run-time of applications observed over

a range of input rates. The upper bound of the shaded area

indicate the maximum run-time, and the dashed lines repre-

sent the median run-time.

messages that were representative of real-world workloads.

We also developed the privacy label functions accordingly.

For the IFC policy, we generated placeholder labels that do

not carry any connotations related to the application. Thus,

we could use the same set of labels consistently across all 27

target applications. In the real-world context, the placeholder

labels can be replacedwith the real-world labels. For example,

the placeholder labels such as Alpha and Beta could be

replaced with employee and customer, respectively.
Run-time Overhead. Figure 11 shows the relative run-

times (y-axis) of the 27 applications observed over the range

of input rates from 2 Hz to 1000 Hz (x-axis), in log-log scale.

The blue shaded area covers the relative run-times for the

selectively-managed applications, and the red shaded area

covers those for the exhaustively-managed versions. The

upper bound of each shaded area represents the maximum

run-time observed (i.e., application with the worst overhead),

and the lower bound represents the minimum. The dashed

lines going across the shaded area represents the median.

As shown by the upper bound of the red shaded area, ex-

haustive tracking incurs overheads up to 2406.2% at 1000 Hz.

In contrast, the maximum overhead of selectively-managed

applications at 1000 Hz is 109.9%. At 30 Hz, which is a typical
input rate [42] for a camera based application such as our ex-
ample (§ 3), exhaustive tracking incurs a maximum overhead
of 153.8%, whereas selective tracking incurs only 15.8%. An
overhead lower than 20% (e.g., 200 ms for every 1-second

worth of task) can be tolerated by a wide range of IoT appli-

cations [64, 70], barring applications with stringent timing

constraints such as urgent healthcare. However, an over-

head greater than 100% (2x run-time) would typically be

intolerable, as the processing delay would be in the orders of

seconds. Thus, exhaustive tracking fails to provide overheads

low enough for one of the applications, even at the input rate

of common video streams. Selective tracking, on the other

hand, provides acceptable overheads for all 27 applications.

Besides the worst case, we observe that the median over-

head grows from 0.2% at 2 Hz to 22.0% at 1000 Hz for the

12

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

a
ir

ta
b
le

a
m

a
z
o
n
-e

c
h
o

a
w

s

b
lin

k

d
ia

lo
g
fl
o
w

ff
m

p
e
g

fi
le

fi
le

-o
p
e
ra

ti
o
n

g
o

o
g
le

-a
c
ti
o
n
s

g
o
o
g
le

-m
a
p
s

h
e
lp

ia
d
v
iz

e

in
b
e
n
ta

jim
p

lg
tv

m
o
d
b
u
s

m
s
-g

ra
p
h

m
s
-l
a
n
g
u
a
g
e

m
s
-s

e
a
rc

h

m
s
-s

p
e
e
c
h

m
s
-v

is
io

n

n
lp

-j
s

o
n
v
if
-n

o
d
e
s

s
o
a
p

s
o
x

tr
e
llo

w
a
ts

o
n

Applications

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
la

ti
ve

 R
u
n
-t

im
e

Baseline

Selectively-managed (30Hz)

Selectively-managed (250Hz)

Exhaustively-managed (30Hz)

Exhaustively-managed (250Hz)

Figure 12. Relative run-times of the 27 applications, selectively-managed and exhaustively-managed, at 30 Hz and 250 Hz.

selectively-managed applications. The median overhead for

exhaustively-managed applications is marginally higher, go-

ing from 0.3% at 2 Hz to 26.8% at 1000 Hz. At 30 Hz, the

median overhead is only 2.2% for selectively-managed ap-

plications, and 2.7% for exhaustively-managed versions. For

both versions, the overhead can be completely masked in

practice by dropping a single non-critical frame (e.g., a frame

that does not contain a face) every second.At 250 Hz, which is
the streaming rate of high frame rate cameras [42], the median
overhead increases to 7.2% for selectively-managed applica-
tions, and 15.9% for exhaustively-managed applications.
For both selective and exhaustive tracking, the majority

of the applications had acceptable median overhead of less

than 20%. This indicates that Turnstile’s DIFT mechanism is

generally efficient, regardless of the instrumentation strategy.

However, selective instrumentation increased the number of
applications with acceptable median overhead from 16 to 22.

Figure 12 shows the relative run-times observed for each

application, at 30 Hz and 250 Hz. At 30 Hz, both instru-

mentation strategies provide low overheads (< 3%) across

most applications, except for modbus and nlp-js. In these

two applications, selective tracking has 52% and 153% less

overhead than exhaustive tracking, incurring 15.8% and 0.4%

overhead respectively. At 250 Hz, we observe three more

applications for which selective tracking provides signifi-

cantly less overhead than exhaustively-managed versions,

namely, amazon-echo (28% less), dialogflow (30% less),

and watson (42% less). In particular, nlp-js incurs an es-

pecially high overhead of 980.2% when using exhaustive

tracking compared to only 2.5% with selective tracking.

nlp-js incurs such a high overhead due to Turnstile

tracking all the large “dictionary” objects containing thou-

sands of words and tokens used for natural language pro-

cessing, which are not privacy-sensitive. Each string found

in this dictionary is converted into a heap-allocated object,

incurring significant overhead. Similarly in the other four ap-

plications for which the overhead due to exhaustive tracking

was unacceptably high, exhaustive instrumentation tracks

non privacy-sensitive objects – e.g., helper objects used for

building HTTP requests, objects containing metadata and

configuration parameters. Selective tracking eliminates such

unnecessary tracking, significantly reducing the overhead.

Summary. RQ2 We found that selective instrumentation

can significantly reduce the overhead in five out of 27 appli-

cations compared to exhaustive instrumentation, bringing

down the worst-case overhead from 153.8% to 15.8% at 30

Hz. This makes the selective tracking approach applicable

across a wider range of applications than exhaustive tracking.

RQ3 The median run-time overhead ranged from 0.2% to

26.8% across the range of input rates in typical in IoT applica-

tions, regardless of the instrumentation strategy. This shows

that Turnstile’s DIFT mechanism is generally efficient.

7 Related Work
Security-typed Languages. Security-typed languages in-

troduce the notion of security types, enabling IFC via type-

checking over the security types. Jif[56], JFlow [55], Fabric

[48], and JRIF [43] are some of the notable security-typed

languages built on Java. FlowCaml [68] and LIO [73] are

some other works, built on top of OCaml [46] and Haskell

[33] respectively. SecVerilog [83] is a hardware design lan-

guage that incorporates static IFC. Security-typed languages

provide strong guarantees and fine-grained control over all

objects in an application. However, they are invasive, as they
require the adoption of the languages’ specialized constructs.

Static Taint Analysis. There is a plethora of prior work on

static taint analysis. We mention only a few relevant ones.

Pixy [39] and TAJ [75] are static taint analysis tools used to

detect vulnerabilities such as cross-site scripting (XSS) in PHP
and Java applications respectively. VEX [8], Mystique [13],

DoubleX [23], TaintMini [77], JSTap [22], ODGen [47] are

tools for detecting such vulnerable dataflows in JavaScript.

Saint [11] and Soteria [12] identify vulnerabilities in IoT ap-

plications. Moore et al. [53] demonstrate a formal technique

for selectively tracking privacy-sensitive objects. However,

the technique was not evaluated on a real runtime system.

Static analysis is insufficient for managing the privacy of

applications during run-time. Hence, Turnstile employs both

static and dynamic IFC techniques inspired from prior work.

13

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

Dynamic Information Flow Tracking (DIFT). DIFT pro-

vides more precise control over the information flow, often

at the cost of run-time overhead. All DIFT systems associate

data with certain labels, track their propagation, and control

the flow of labelled data at specific interface boundaries.

Resin [79], SafeWeb [32], DEFCon [51], Hails [29], and

LWeb [59] are some of the application-level DIFT systems,

which can provide platform independence. However, all of

the above systems require significant changes to the applica-

tion code, violating the non-invasiveness constraint.
JSFlow [31] and FlowFox [18] are platform-level DIFT sys-

tems integrated into specialized JavaScript runtime systems.

Flume [44], HiStar [81], and DStar [82] are platform-level
DIFT systems incorporated at the OS-level. Laminar [66] and

TaintDroid [21] unify language-level IFC with OS-level IFC,

by allowing labels to be tracked across the various software

layers. Such platform-level DIFT systems require specialized

platforms, violating the platform-independence constraint.
JEST [17] is an IFC monitor targeting browser-based ap-

plications. Similar to Turnstile, it prioritizes practicality and

takes an inlining approach. The key difference is Turnstile’s

adoption of value-dependent labels, as opposed to static la-

bels bound to data locations. This allows Turnstile to manage

the privacy of data whose label depends dynamically on run-

time content, rather than its source or code location. For

instance, JEST associates a label with an image input ele-

ment on an HTML form, whereas Turnstile associates a label

dynamically to the uploaded image based on its content.

Provenance Systems. Provenance systems have several

overlaps with IFC systems. Earlier systems such as Hi-Fi [65]

and SPADE [28] focused primarily on logging data move-

ment across system resources. Later systems such as Data-

Tracker [72], ProTracer [50], and CamFlow [61] incorporated

dynamic taint tracking to trace the flow of data on-the-fly.

PB-DLP [9] and CamQuery [62] provide provenance-based

run-time IFC. They are used to prevent sensitive data from

leaving the device, which can be done by Turnstile. Unlike

Turnstile, they control data flow based on the provenance,

not based on the content of the data. NodeMedic [10] uses

provenance graphs to identify vulnerabilities in Node.js pack-

ages, which is a dynamic approach to identifying privacy-

sensitive code paths as opposed to Turnstile’s static analysis.

PrivacyManagement in IoT. ContexIoT [38] employs code

augmentation technique similar to that of Turnstile. How-

ever, ContexIoT’s flow control is based on a mapping be-

tween distinct dataflow paths and explicit end-user permis-

sions. ProvThings [78] is a provenance-based IFC system for

IoT applications. PFirewall [16] is a centralized system for

managing the dataflow of smart home applications based on

user-defined policies. It does not track dataflows and controls

flows based on the run-time information only.

FlowFence [24] provides sandboxing for handling privacy-

sensitive data. It requires a rewrite of the application and

relies on the developer to identify the sensitive parts of the ap-

plication. Similarly, SandTrap [7] provides isolation between

the user application and third-party code in trigger-action

platforms (TAP), to prevent sensitive data from entering the

third-party code inadvertently. However, it does not track

data propagation beyond the interface between the applica-

tion and the third-party component. MinTAP [14] provides a

data minimization technique for TAPs, and does not provide

flow control beyond the TAP interface.

Prior work on privacy management in IoT addresses con-

cerns such as isolation [7, 24], data minimization [14], or

access control [16, 38]. To the best of our knowledge, Turn-

stile is the first DIFT system for IoT applications.

8 Conclusion
We developed Turnstile, a hybrid IFC framework for man-

aging privacy in distributed IoT applications. Unlike prior

work, Turnstile requires changes to neither the runtime plat-

form nor the application code. We evaluate Turnstile on 61

publicly available Node-RED IoT applications, in terms of its

effectiveness and performance. We find that Turnstile’s static

dataflow analyzer identifies privacy-sensitive code paths

within the order of milliseconds, making it a practical tool

in a developer’s arsenal. Further, Turnstile outperforms Cod-

eQL both in terms of the number of code paths found and

the time taken for the analysis. Finally, Turnstile provides

a self-contained DIFT system that transparently controls

the flow of private objects during run-time, while incurring

only 2.2% median overhead when the input workload was

streamed at 30 Hz, which is typical of IoT video streams.

There are three directions for future work. First, we want

to provide stronger guarantees of noninterference by han-

dling implicit flows and other dynamic control flows, which

Turnstile currently does not handle. Second, we want to

extend and generalize the same approach across different

languages, as many real-world systems involve components

written in languages other than JavaScript (e.g., Python).

Finally, while we focused on privacy, we can use a differ-

ent labelling framework to express more complex policies

including integrity labels.

Acknowledgements
We thank our shepherd, Yinzhi Cao, for his guidance through

the revision process. This work was supported in part by the

Innovation for Defence Excellence and Security (IDEaS) pro-

gram from the Department of National Defence of Canada,

and the Natural Sciences and Engineering Research Council

of Canada (NSERC).

References
[1] 2018. California Consumer Privacy Act of 2018. CAL. CIV, TITLE 1.81.5.,

Ch.55, Sec. 3 (2018). https://leginfo.legislature.ca.gov/faces/codes_
displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5

14

https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

[2] 2024. AWS IoT Greengrass Documentation. https://docs.aws.amazon.
com/greengrass/.

[3] 2024. Azure IoT Hub Documentation. https://learn.microsoft.com/en-
ca/azure/iot-hub/.

[4] 2024. SmartApp SDK - Node.js. https://developer.smartthings.com/
docs/sdks/smartapp-nodejs.

[5] 2025. Homebridge. https://homebridge.io/.
[6] 2025. openHAB. https://www.openhab.org/docs/.
[7] Mohammad M Ahmadpanah, Daniel Hedin, Musard Balliu, Lars Eric

Olsson, and Andrei Sabelfeld. 2021. {SandTrap}: Securing {JavaScript-
driven}{Trigger-Action} Platforms. In 30th USENIX Security Sympo-
sium (USENIX Security 21). 2899–2916.

[8] Sruthi Bandhakavi, Nandit Tiku, Wyatt Pittman, Samuel T King, P

Madhusudan, and Marianne Winslett. 2011. Vetting browser exten-

sions for security vulnerabilities with vex. Commun. ACM 54, 9 (2011),

91–99.

[9] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer.

2015. Trustworthy {Whole-System} provenance for the linux kernel.
In 24th USENIX Security Symposium (USENIX Security 15). 319–334.

[10] Darion Cassel, Wai Tuck Wong, and Limin Jia. 2023. Nodemedic: End-

to-end analysis of node. js vulnerabilities with provenance graphs. In

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P).
IEEE, 1101–1127.

[11] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,

Gang Tan, Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive

information tracking in commodity {IoT}. In 27th USENIX Security
Symposium (USENIX Security 18). 1687–1704.

[12] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Au-

tomated {IoT} safety and security analysis. In 2018 USENIX annual
technical conference (USENIX ATC 18). 147–158.

[13] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering

information leakage from browser extensions. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
1687–1700.

[14] Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld, Rahul Chat-

terjee, and Earlence Fernandes. 2022. Practical data access minimiza-

tion in {Trigger-Action} platforms. In 31st USENIX Security Symposium
(USENIX Security 22). 2929–2945.

[15] Winnie Cheng, Dan RK Ports, David Schultz, Victoria Popic, Aaron

Blankstein, James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara

Liskov. 2012. Abstractions for usable information flow control in

Aeolus. In 2012 USENIX Annual Technical Conference (USENIX ATC 12).
139–151.

[16] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Lannan Luo. 2021. Pfire-

wall: Semantics-aware customizable data flow control for home au-

tomation systems. In Network and Distributed Systems Symposium.

[17] Andrey Chudnov and David A Naumann. 2015. Inlined information

flowmonitoring for JavaScript. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 629–643.

[18] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank

Piessens. 2012. FlowFox: a web browser with flexible and precise

information flow control. In Proceedings of the 2012 ACM conference
on Computer and communications security. 748–759.

[19] Dorothy E Denning and Peter J Denning. 1977. Certification of pro-

grams for secure information flow. Commun. ACM 20, 7 (1977), 504–

513.

[20] Mohan Dhawan and Vinod Ganapathy. 2009. Analyzing information

flow in JavaScript-based browser extensions. In 2009 Annual Computer
Security Applications Conference. IEEE, 382–391.

[21] William Enck, Peter Gilbert, SeungyeopHan, Vasant Tendulkar, Byung-

Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and An-

mol N Sheth. 2014. Taintdroid: an information-flow tracking system

for realtime privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS) 32, 2 (2014), 1–29.

[22] Aurore Fass, Michael Backes, and Ben Stock. 2019. Jstap: a static

pre-filter for malicious javascript detection. In Proceedings of the 35th
Annual Computer Security Applications Conference. 257–269.

[23] Aurore Fass, Dolière Francis Somé, Michael Backes, and Ben Stock.

2021. Doublex: Statically detecting vulnerable data flows in browser

extensions at scale. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. 1789–1804.

[24] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato,

Mauro Conti, and Atul Prakash. 2016. {FlowFence}: Practical data
protection for emerging {IoT} application frameworks. In 25th USENIX
security symposium (USENIX Security 16). 531–548.

[25] IoT Security Foundation. 2019. Secure design best practice

guides. https://iotsecurityfoundation.org/wp-content/uploads/2019/
12/Best-Practice-Guides-Release-2_Digitalv3.pdf. [Accessed 24-06-

2024].

[26] OpenJS Foundation. 2024. Express - Node.js web application frame-

work. https://expressjs.com/. [Accessed 24-06-2024].

[27] OpenJS Foundation. 2024. Node-RED. https://nodered.org/. [Accessed
24-06-2024].

[28] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for prove-

nance auditing in distributed environments. In ACM/IFIP/USENIX In-
ternational Conference on Distributed Systems Platforms and Open Dis-
tributed Processing. Springer, 101–120.

[29] Daniel B Giffin, Amit Levy, Deian Stefan, David Terei, David Mazieres,

John C Mitchell, and Alejandro Russo. 2012. Hails: Protecting data

privacy in untrusted web applications. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12). 47–60.

[30] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham,

Nguyen Nguyen, and Martin C Rinard. 2015. Information flow analysis

of android applications in droidsafe.. In NDSS, Vol. 15. 110.
[31] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld.

2014. JSFlow: Tracking information flow in JavaScript and its APIs. In

Proceedings of the 29th Annual ACM Symposium on Applied Computing.
1663–1671.

[32] Petr Hosek, Matteo Migliavacca, Ioannis Papagiannis, David M Ey-

ers, David Evans, Brian Shand, Jean Bacon, and Peter Pietzuch. 2011.

SafeWeb: AMiddleware for Securing Ruby-BasedWeb Applications. In

Middleware 2011: ACM/IFIP/USENIX 12th International Middleware Con-
ference, Lisbon, Portugal, December 12-16, 2011. Proceedings 12. Springer,
491–511.

[33] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler.

2007. A history of Haskell: being lazy with class. In Proceedings of the
third ACM SIGPLAN conference on History of programming languages.
12–1.

[34] Github Inc. 2024. CodeQL. https://codeql.github.com/. [Accessed

24-06-2024].

[35] Ecma International. 2015. ECMAScript 2015 Language Specifica-

tion. https://ecma-international.org/wp-content/uploads/ECMA-262_
6th_edition_june_2015.pdf.

[36] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. 2010.

An empirical study of privacy-violating information flows in JavaScript

web applications. In Proceedings of the 17th ACM conference on Com-
puter and communications security. 270–283.

[37] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type

analysis for JavaScript. In Static Analysis: 16th International Symposium,
SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings 16.
Springer, 238–255.

[38] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence

Fernandes, Zhuoqing Morley Mao, Atul Prakash, and SJ Unviersity.

2017. ContexloT: Towards providing contextual integrity to appified

IoT platforms.. In ndss, Vol. 2. San Diego, 2–2.

[39] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy:

A static analysis tool for detecting web application vulnerabilities. In

2006 IEEE Symposium on Security and Privacy (S&P’06). IEEE, 6–pp.

15

https://docs.aws.amazon.com/greengrass/
https://docs.aws.amazon.com/greengrass/
https://learn.microsoft.com/en-ca/azure/iot-hub/
https://learn.microsoft.com/en-ca/azure/iot-hub/
https://developer.smartthings.com/docs/sdks/smartapp-nodejs
https://developer.smartthings.com/docs/sdks/smartapp-nodejs
https://homebridge.io/
https://www.openhab.org/docs/
https://iotsecurityfoundation.org/wp-content/uploads/2019/12/Best-Practice-Guides-Release-2_Digitalv3.pdf
https://iotsecurityfoundation.org/wp-content/uploads/2019/12/Best-Practice-Guides-Release-2_Digitalv3.pdf
https://expressjs.com/
https://nodered.org/
https://codeql.github.com/
https://ecma-international.org/wp-content/uploads/ECMA-262_6th_edition_june_2015.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_6th_edition_june_2015.pdf

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

[40] Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, VN

Venkatakrishnan, and Yinzhi Cao. 2023. Scaling javascript abstract

interpretation to detect and exploit node. js taint-style vulnerability. In

2023 IEEE Symposium on Security and Privacy (SP). IEEE, 1059–1076.
[41] Rezwana Karim, Frank Tip, Alena Sochurkova, and Koushik Sen. 2018.

Platform-independent dynamic taint analysis for javascript. IEEE
Transactions on Software Engineering 46, 12 (2018), 1364–1379.

[42] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan,

and Simon Lucey. 2017. Need for speed: A benchmark for higher frame

rate object tracking. In Proceedings of the IEEE international conference
on computer vision. 1125–1134.

[43] Elisavet Kozyri, Owen Arden, Andrew C Myers, and Fred B Schneider.

2019. JRIF: reactive information flow control for java. Foundations
of Security, Protocols, and Equational Reasoning: Essays Dedicated to
Catherine A. Meadows (2019), 70–88.

[44] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans

Kaashoek, Eddie Kohler, and Robert Morris. 2007. Information flow

control for standard OS abstractions. ACM SIGOPS Operating Systems
Review 41, 6 (2007), 321–334.

[45] Josephine Lau, Benjamin Zimmerman, and Florian Schaub. 2018. Alexa,

are you listening? Privacy perceptions, concerns and privacy-seeking

behaviors with smart speakers. Proceedings of the ACM on human-
computer interaction 2, CSCW (2018), 1–31.

[46] Xavier Leroy, Jerome Vouillon, Damien Doligez, and Didier Remy.

[n. d.]. Why OCaml? — ocaml.org. https://ocaml.org/about. [Accessed
24-06-2024].

[47] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining

node.js vulnerabilities via object dependence graph and query. In 31st
USENIX Security Symposium (USENIX Security 22). 143–160.

[48] Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, LucasWaye,

and Andrew C Myers. 2009. Fabric: A platform for secure distributed

computation and storage. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. 321–334.

[49] Joakim Lundin. 2024. node-red-contrib-deepstack. https://flows.
nodered.org/node/node-red-contrib-deepstack. [Accessed 24-06-

2024].

[50] Shiqing Ma, Xiangyu Zhang, Dongyan Xu, et al. 2016. Protracer: To-

wards Practical Provenance Tracing by Alternating Between Logging

and Tainting.. In NDSS, Vol. 2. 4.
[51] Matteo Migliavacca, Ioannis Papagiannis, David M Eyers, Brian

Shand, Jean Bacon, and Peter Pietzuch. 2010. {DEFCON}:{High-
Performance} Event Processing with Information Security. In 2010
USENIX Annual Technical Conference (USENIX ATC 10).

[52] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and Peng Liu. 2016.

Straighttaint: Decoupled offline symbolic taint analysis. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering. 308–319.

[53] Scott Moore and Stephen Chong. 2011. Static analysis for efficient

hybrid information-flow control. In 2011 IEEE 24th Computer Security
Foundations Symposium. IEEE, 146–160.

[54] J Paul Morrison. 2010. Flow-Based Programming: A new approach to
application development. CreateSpace.

[55] Andrew CMyers. 1999. JFlow: Practical mostly-static information flow

control. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. 228–241.

[56] Andrew C. Myers, N. Nystrom, L. Zheng, and Zdancewic S. [n. d.].

Jif: Java Information Flow. https://www.cs.cornell.edu/jif. [Accessed
24-06-2024].

[57] James Newsome and Dawn Xiaodong Song. 2005. Dynamic taint

analysis for automatic detection, analysis, and signaturegeneration of

exploits on commodity software.. In NDSS, Vol. 5. Citeseer, 3–4.
[58] Publications Office of the European Union. 2016. General data protec-

tion regulation (GDPR). Official Journal (L 119) of the European Union
59 (4 May 2016), 1–88. http://data.europa.eu/eli/reg/2016/679/oj

[59] James Parker, Niki Vazou, and Michael Hicks. 2019. LWeb: Information

flow security for multi-tier web applications. Proceedings of the ACM
on Programming Languages 3, POPL (2019), 1–30.

[60] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer,

David Eyers, Margo Seltzer, and Jean Bacon. 2017. Practical Whole-

System Provenance Capture. In Symposium on Cloud Computing
(SoCC’17). ACM.

[61] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer,

David Eyers, Margo Seltzer, and Jean Bacon. 2017. Practical whole-

system provenance capture. In Proceedings of the 2017 Symposium on
Cloud Computing. 405–418.

[62] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier

Hermant, David Eyers, Jean Bacon, and Margo Seltzer. 2018. Runtime

analysis of whole-system provenance. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security. 1601–
1616.

[63] Thomas FJ-M Pasquier, Jean Bacon, and Brian Shand. 2014. FlowR:

aspect oriented programming for information flow control in ruby. In

Proceedings of the 13th international conference on Modularity. 37–48.
[64] Adrian Pekar, Jozef Mocnej, Winston KG Seah, and Iveta Zolotova.

2020. Application domain-based overview of IoT network traffic char-

acteristics. ACM Computing Surveys (CSUR) 53, 4 (2020), 1–33.
[65] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin But-

ler. 2012. Hi-fi: collecting high-fidelity whole-system provenance. In

Proceedings of the 28th Annual Computer Security Applications Confer-
ence. 259–268.

[66] Indrajit Roy, Donald E Porter, Michael D Bond, Kathryn S McKinley,

and Emmett Witchel. 2009. Laminar: Practical fine-grained decentral-

ized information flow control. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 63–
74.

[67] Angela Sanguinetti, Beth Karlin, and Rebecca Ford. 2018. Understand-

ing the path to smart home adoption: Segmenting and describing

consumers across the innovation-decision process. Energy research &
social science 46 (2018), 274–283.

[68] Vincent Simonet. 2003. The Flow Caml System: documentation and
user’s manual. Ph. D. Dissertation. INRIA.

[69] Jatinder Singh, Julia Powles, Thomas Pasquier, and Jean Bacon. 2015.

Data flow management and compliance in cloud computing. IEEE
Cloud Computing 2, 4 (2015), 24–32.

[70] Arunan Sivanathan, Daniel Sherratt, HassanHabibi Gharakheili, Adam

Radford, Chamith Wijenayake, Arun Vishwanath, and Vijay Sivara-

man. 2017. Characterizing and classifying IoT traffic in smart cities

and campuses. In 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 559–564.

[71] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schafer, Anders

Moller, and Michael Pradel. 2020. Extracting taint specifications for

javascript libraries. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 198–209.

[72] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. 2015. Look-

ing inside the black-box: capturing data provenance using dynamic

instrumentation. In Provenance and Annotation of Data and Processes:
5th International Provenance and Annotation Workshop, IPAW 2014,
Cologne, Germany, June 9-13, 2014. Revised Selected Papers 5. Springer,
155–167.

[73] Deian Stefan, Alejandro Russo, John C Mitchell, and David Mazières.

2011. Flexible dynamic information flow control in Haskell. In Pro-
ceedings of the 4th ACM Symposium on Haskell. 95–106.

[74] Council to Secure the Digital Economy. 2019. The C2 Consensus on IoT

Device Security Baseline Capabilities. https://csde.org/wp-content/
uploads/2019/09/CSDE_IoT-C2-Consensus-Report_FINAL.pdf. [Ac-
cessed 24-06-2024].

[75] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri

Weisman. 2009. TAJ: effective taint analysis of web applications. ACM

16

https://ocaml.org/about
https://flows.nodered.org/node/node-red-contrib-deepstack
https://flows.nodered.org/node/node-red-contrib-deepstack
https://www.cs.cornell.edu/jif
http://data.europa.eu/eli/reg/2016/679/oj
https://csde.org/wp-content/uploads/2019/09/CSDE_IoT-C2-Consensus-Report_FINAL.pdf
https://csde.org/wp-content/uploads/2019/09/CSDE_IoT-C2-Consensus-Report_FINAL.pdf

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Sigplan Notices 44, 6 (2009), 87–97.
[76] Csongor Varga. 2024. NVR: capture, store, email pictures/videos

from IP camera streams. https://flows.nodered.org/flow/
0da4d606575df13700461400178aca4e. [Accessed 24-06-2024].

[77] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin.

2023. Taintmini: Detecting flow of sensitive data in mini-programs

with static taint analysis. In 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE). IEEE, 932–944.

[78] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2018. Fear

and logging in the internet of things. In Network and Distributed Sys-
tems Symposium.

[79] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M Frans Kaashoek.

2009. Improving application security with data flow assertions. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. 291–304.

[80] Michael Zeifman and Kurt Roth. 2011. Nonintrusive appliance load

monitoring: Review and outlook. IEEE transactions on Consumer Elec-
tronics 57, 1 (2011), 76–84.

[81] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David

Mazieres. 2011. Making information flow explicit in HiStar. Commun.
ACM 54, 11 (2011), 93–101.

[82] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazieres. 2008.

Securing Distributed Systems with Information Flow Control.. In NSDI,
Vol. 8. 293–308.

[83] Danfeng Zhang, YaoWang, G Edward Suh, and Andrew CMyers. 2015.

A hardware design language for timing-sensitive information-flow

security. Acm Sigplan Notices 50, 4 (2015), 503–516.
[84] Miao Zhang, Fangxin Wang, Yifei Zhu, Jiangchuan Liu, and Zhi Wang.

2021. Towards cloud-edge collaborative online video analytics with

fine-grained serverless pipelines. In Proceedings of the 12th ACM mul-
timedia systems conference. 80–93.

[85] Rui Zhao, Chuan Yue, and Qing Yi. 2015. Automatic detection of infor-

mation leakage vulnerabilities in browser extensions. In Proceedings
of the 24th International Conference on World Wide Web. 1384–1394.

[86] Lantian Zheng and Andrew C Myers. 2007. Dynamic security labels

and static information flow control. International Journal of Informa-
tion Security 6 (2007), 67–84.

A Artifact Appendix
A.1 Abstract
The artifact package includes the source code of Turnstile,

the CodeQL query wewrote for performing the taint analysis

described in Section 6.1, the original data and third-party

application code used to create the Figures 10, 11, and 12,

the scripts used to process the raw data and produce the

above figures, and a Dockerfile for building the container

image containing all the dependencies for the execution

environment.

A.2 Description & Requirements
A.2.1 How to access. The following Github repository

contains all the components needed for recreating the exper-

iments.

https://github.com/DependableSystemsLab
/Turnstile-EuroSys26

It is archived at https://zenodo.org/records/17042223.

A.2.2 Hardware dependencies. At least 12 GB of disk

space is required to store the Docker image and the output

from the experiments. At least 8 GB of RAM is recommended,

as we allocate 6 GB to the Node.js runtime for the experiment.

We conducted the experiments on a virtual machine with 4

vCPUs and 8 GB RAM, where the host machine was running

a Intel Platinum 6548Y+ processor.

A.2.3 Software dependencies. To recreate the execution

environment, Docker is required to run the provided Docker

image.

A.2.4 Benchmarks. 61 third-party repositories used in

Section 6 are required. These are already included in the

provided Docker image.

A.3 Set-up
The recommended way to get started with running the arti-

fact is to use the pre-built Docker image hosted at Docker

Hub. Simply start a new container and enter the interactive

shell with the following command:

docker run -it −−name turnstile-exp \
jungkumseok/turnstile:eurosys26 /bin/bash

A.4 Evaluation workflow
A.4.1 Major Claims.

• (C1): Turnstile is more effective than CodeQL at identi-
fying the privacy-sensitive dataflows, finding a total of
190, compared to 52 found by CodeQL. This is illustrated
by the experiment (E1) in Section 6.1 whose results are
illustrated in Figure 10.

• (C2): Turnstile’s selective instrumentation can signifi-
cantly reduce the overhead in five out of 27 applications
compared to exhaustive instrumentation, and Turnstile’s
DIFT mechanism is generally efficient as the median
run-time overhead ranged from 0.2% to 26.8% across the
range of input rates. This is demonstrated by the experi-
ment (E2) in Section 6.2 whose reults are illustrated in
Figures 11 and 12.

A.4.2 Experiments.

Experiment (E1): Taint Analysis [1 human-minute + 3
compute-hour]: performs taint analysis over 61 third-party

Node-RED applications from Section 6.1, using CodeQL and

Turnstile.

In the interactive shell of the Docker container, navigate

to the /root/turnstile/scripts/analysis directory.

Run the Node.js script called run-codeql-multiple.js
to run the CodeQL analyses.

17

https://flows.nodered.org/flow/0da4d606575df13700461400178aca4e
https://flows.nodered.org/flow/0da4d606575df13700461400178aca4e
https://zenodo.org/records/17042223

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jung et al.

node run-codeql-multiple.js REPOLIST.txt

This might take up to 3 hours
5
. Then, run the Node.js script

called run-turnstile-multiple.js to run the Turnstile

analyses, which takes about 4 minutes.

node run-turnstile-multiple.js REPOLIST.txt

The two scripts should generate two CSV files in the

/root/output directory:

codeql-taint-analysis-result.DT.csv
turnstile-taint-analysis-result.DT.csv

DT is a timestamp indicating the time at which the CSV file

was generated. Hereon, we assume that all output from the

experiments are generated in the /root/output directory,

and will not mention the output location explicitly.

Go to /root/turnstile/scripts/presentation
and run compile-analysis-results.js to aggregate

the two CSV files into a single CSV file.

node compile-analysis-results.js \
turnstile-taint-analysis-result.DT.csv \
codeql-taint-analysis-result.DT.csv

A CSV named taint-analysis-compiled.DT.csv will

be generated, which can be used to generate Figure 10. Be-

fore creating the plot, the Python virtual environment must

be active:

source .venv/bin/activate

Run the Python script plot-line-dataflow.py with

the aggregated CSV file to generate Figure 10.

python plot-line-dataflow.py \
taint-analysis-compiled.DT.csv

This will output a PNG file named line-plot.DT.png.
This figure should be exactly the same as the Figure 10 in

the paper.

Experiment (E2): Performance OverheadMeasurement
[1 human-minute + 24 compute-hour]: runs the 27 third-
party Node-RED applications from Section 6.2 in a test envi-

ronment, repeating the experiments across different input

rates.

Navigate to /root/turnstile/scripts/experiment
directory in the interactive shell.

5
It took about 3 hours in our setup, but the timing depends on the hardware.

Run the bash script called run-all-experiments.sh
to run the experiments.

./run-all-experiments.sh

The script should take about 24 hours to complete. It will

generate about 3.86 GB worth of raw data in one or more

directories named exp-DT, with each file inside correspond-

ing to a single run. If you wish to reduce the time by running

only a subset of the experiments, please refer to Section A.6.

Once the script completes, navigate to

/root/turnstile/scripts/presentation and run the
compile-experiment-results.js script to consolidate

all the raw data into a single JSON file.

node compile-experiment-results.js \
exp-DT1 exp-DT2

This should generate a JSON file named

exp-results-compiled.DT.json.
To generate Figure 11, run the extract-area-data.js

script with the JSON file to generate a CSV file.

node extract-area-data.js \
exp-results-compiled.DT.json

This generates a CSVfile named plot-area-data.DT.csv.
Run plot-area-applications.py with the CSV file to

generate Figure 11.

python plot-area-applications.py \
plot-area-data.DT.csv

To generate Figure 12, run the extract-bar-data.js
script with the JSON file to generate another CSV file.

node extract-bar-data.js \
exp-results-compiled.DT.json

This generates a CSVfile named plot-bar-data.DT.csv.
Run plot-bar-applications.py to generate Figure 12.

python plot-bar-applications.py \
plot-bar-data.DT.csv

There will be two PNG files named area-plot.X.png
and bar-plot.X.png, generated by the two Python scripts

above. These two figures will not be exactly the same as

Figures 11 and 12 in the paper, due to the platform differ-

ences. However, the overall trend should still be similar, and

still support our claim C2. The median overhead shown in

area-plot.X.png should be only slightly above 1, show-

ing that the overhead is generally low across the applications.

18

Turnstile: Hybrid IFC Framework for IoT Applications EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

The maximum overhead shown in both figures should illus-

trate that the selective instrumentation reduces the overhead

significantly compared to exhaustive instrumentation.

A.5 Notes on Reusability
The automation scripts internally execute smaller scripts,

which can be used to perform small steps in the experiment.

These “micro-scripts” can be used to test Turnstile’s limits

against applications not covered in the paper.

The run-turnstile-single.js script can be used to

run Turnstile on an arbitrary code repository. It should print

to the console the privacy-sensitive dataflows found by Turn-

stile, and an HTML page that can be used to visually inspect

the dataflows.

Additionally, the artifact package contains the source code

of Turnstile. The files CodeAnalyzer.js and

PrivacyTracker.js can be extended to improve the cov-

erage of Turnstile.

A.6 General Notes
Even though we included a reduced version of the exper-

iment E2, it can take up to 24 hours, which might be too

long for the purpose of trying out the artifact. If you wish

to reduce the experiment time more significantly, open the

run-all-experiments.sh file and comment out the fol-

lowing lines. These two lines correspond to the runs with

input rate of 2 Hz, which is the most time consuming.

node run-experiment.js $exp V3-2fps false
node run-experiment.js $exp V3-2fps true

Received 14 May 2025; revised 15 Sept 2025; accepted 26 Sept 2025

19

	Abstract
	1 Introduction
	2 Background and Threat Model
	3 Motivating Example
	4 Approach
	4.1 System Architecture and Workflow
	4.2 Dataflow Analyzer
	4.3 Code Instrumentor
	4.4 Inlined Dynamic Information Flow Tracker
	4.5 Support for JavaScript Features
	4.6 Limitations and Discussion

	5 Case Study: Network Video Recorder
	6 Evaluation
	6.1 Part 1: Static Code Path Selection
	6.2 Part 2: Run-time Performance Overhead

	7 Related Work
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability
	A.6 General Notes

