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Abstract—The adoption of machine-learning-enabled systems
in the healthcare domain is on the rise. While the use of ML in
healthcare has several benefits, it also expands the threat surface
of medical systems. We show that the use of ML in medical
systems, particularly connected systems that involve interfacing
the ML engine with multiple peripheral devices, has security
risks that might cause life-threatening damage to a patient’s
health in case of adversarial interventions. These new risks
arise due to security vulnerabilities in the peripheral devices
and communication channels. We present a case study where
we demonstrate an attack on an ML-enabled blood glucose
monitoring system by introducing adversarial data points during
inference. We show that an adversary can achieve this by
exploiting a known vulnerability in the Bluetooth communication
channel connecting the glucose meter with the ML-enabled app.
We further show that state-of-the-art risk assessment techniques
are not adequate for identifying and assessing these new risks.
Our study highlights the need for novel risk analysis methods for
analyzing the security of AI-enabled connected health devices.

Index Terms—Machine learning, FDA, medical system security,
risk analysis, multi-vendor systems.

I. INTRODUCTION

The use of Artificial Intelligence (AI), especially Machine

Learning (ML) techniques, is becoming increasingly popular

in the medical field. As of October 2022, the U.S. Food and

Drug Administration (FDA) has approved 521 ML-enabled de-

vices across 15 different medical disciplines (e.g., Cardiology,

Ophthalmology, and Gastroenterology) [1]. However, the use

of ML has expanded the threat surface of medical systems [2]–

[16] making them more vulnerable to cyberattacks.

ML-enabled medical devices are used for performing crit-

ical activities such as remote patient monitoring, controlling

surgical equipment, automatic drug administration, and pre-

liminary/advanced disease diagnosis – tasks that require high

accuracy and reliability [1]. If an adversary compromises such

a device, it can force the ML engine to make incorrect predic-

tions or decisions, which can have catastrophic consequences,

such as wrong treatment leading to health complications.

An adversary can force an ML engine to generate incorrect

predictions or decisions by injecting carefully crafted mali-

cious data points either during training or inference. Preventing

such attacks in ML-enabled medical devices is challenging.

These ML-enabled devices are typically interconnected with

other peripheral sensor devices that collect physiological data

of patients, which are then processed by the ML engine.

Therefore, it is not enough to secure the ML-enabled device,

since adversaries can exploit vulnerabilities in the peripheral

devices to inject malicious data points in the ML engine.

To protect the end-to-end system, one must systematically

identify and assess the security risks 1 of the overall system

due to vulnerabilities in peripheral devices. To the best of our
knowledge, there is no systematic technique for identifying and
assessing the end-to-end risks of ML-enabled medical systems.

Identification of risks in ML-enabled connected medical

systems has two challenges. First, at deployment, the ML-

enabled device is interfaced with several other peripheral

devices, each of which may be manufactured by a different

company. For instance, a user of the ML-enabled blood

glucose monitoring app Dreamed Advisor Pro [17], needs to

install the app on a smartphone, and then connect to it a

smartwatch, a glucose meter, and an insulin pump, all of which

would be manufactured by different companies, and may have

their own security vulnerabilities. Second, each app user may

use peripheral devices from different sets of manufacturers,

leading to diverse vulnerabilities among different users of

the same app. For instance, one user of the app might use

a vulnerable smartphone, while another user might use a

vulnerable glucose meter.

Furthermore, it is also challenging to assess the severity of

these risks. This is because the severity of a risk posed by

a vulnerable peripheral device might differ when assessed in

the context of the individual device (in-silo assessment) versus

when assessed in the context of the entire system. For instance,

consider a user who connects the Dreamed Advisor Pro app

to a glucose meter with a write-access vulnerability, and a

smartphone with a read-access vulnerability. When assessed

separately, the glucose meter would have a higher perceived

risk than the smartphone. However, for an adversary who

wants to inject adversarial glucose meter readings into the

app, being able to read data from the smartphone (e.g., meal

timings, latest insulin dose, carbohydrates taken) might be

useful for crafting malicious data points that adhere to physi-

ological constraints. Adhering to the physiological constraints

is important for the adversary to get the malicious data points

accepted as valid inputs by the ML engine. Therefore, we

need to holistically consider the risks from the interplay of

vulnerabilities in peripheral devices.

1We define risk as the probability of a security vulnerability getting
exploited, and its potential impact or loss.
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In this paper, we perform a systematic analysis to highlight

the security risks of end-to-end ML-enabled connected med-

ical systems. Our analysis consists of three steps. First, we

conduct a systematic exploration of the FDA-approved ML-

enabled medical devices to understand the ML techniques that

they use, and the damage that can be caused to a patient if the

ML technique mispredicts their case. Second, we conduct an

extensive review to identify possible ways in which adversaries

can inject malicious data points into an ML-enabled medical

device at deployment. This involves a cross-domain analysis,

where we map known attacks on ML algorithms with known

vulnerabilities in peripheral devices that would make the

attacks practical. Finally, we perform a critical evaluation

of state-of-the-art risk assessment frameworks used by the

ML-enabled medical device manufacturing companies today.

We identify the loopholes in these risk assessment strategies

that might make manufacturers miss the risks arising due to

vulnerabilities in connected peripheral devices.

Contributions. The main contributions of this paper are:

1) We perform a systematic cross-domain security analysis

of commercial ML-enabled medical devices approved by

the FDA (Section III), to highlight the security risks of

connected health devices.

2) We then perform a case study on a realistic ML-enabled

blood glucose management system (BGMS) (Section IV)

to demonstrate an attack on the system where the adversary

compromises a communication link in the system.

3) Finally, we perform an evaluation of state-of-the-art risk

assessment techniques (Section V). We find that they are

inadequate in identifying and analyzing the severity of

security risks in ML-enabled medical systems, particularly

the risks posed to the ML engine by vulnerable peripheral

devices. We also highlight directions for improvement.

II. MOTIVATION AND BACKGROUND

We highlight security risks in AI/ML-enabled medical

systems due to vulnerabilities in their connected peripheral

components, using the example of the BGMS. Following this,

we demonstrate the generalizability of identified risks to any

connected ML-enabled medical system.

A. Blood Glucose Management: Background

Diabetes is a chronic health condition that hinders the

body’s natural insulin production capability, leading to ele-

vated blood glucose levels. It has detrimental effects on a

patient’s health, and sudden spikes or drops in blood glucose

can be life-threatening. Blood glucose levels can be divided

into three ranges, hypoglycemic (< 70-80 mg/dL), normal (80

mg/dl - 125 mg/dl), and hyperglycemic (> 125 mg/dL while

fasting and > 180 mg/dL two hours postprandial) [18], [19].

A consistently hyperglycemic patient (i.e., diabetic) requires

insulin injections to normalize their glucose levels. In contrast,

a hypoglycemic patient does not need insulin injections.

BGMS apps help diabetic patients monitor their blood

glucose levels and administer insulin bolus whenever the

glucose levels begin to rise at an abnormal rate. The patient

Fig. 1: A blood glucose management system that uses ML

on the cloud, and interfaces with multiple peripheral devices.

can either manually inject the insulin, or use an automated

insulin pump connected to and controlled by the BGMS app.

It is crucial to calculate the insulin bolus dose accurately — an

overdose can lead to a sharp drop in blood glucose, while an

insufficient dose may not bring it down to the normal range.

B. An ML-enabled Blood Glucose Management System

We consider a commercial FDA-approved ML-enabled

BGMS app, the Dreamed Advisor Pro [17]. This app assists

diabetic patients in maintaining normal blood glucose levels by

periodically recommending insulin bolus doses, personalized

meal plans, and physical activities. However, since the specific

ML technique used by the Dreamed Advisor Pro app is not

publicly disclosed, we instead use a well-known, public ML-

based blood glucose prediction technique [20].

BGMS apps suggest insulin doses based on the patient’s

predicted blood glucose level in the near future (next 30 or 60
mins) [20]. This prediction is done by an ML engine running

at the back-end of the BGMS app, using recent physiological

values of the patient, such as blood glucose measurements,

insulin doses taken, meal timings, carbohydrate intake, etc.

These values are either entered manually into the app by the

patient or read from other peripheral sensor devices (e.g.,

continuous glucose monitors and smartwatches) connected

to the patient’s body. Besides sensor devices, the app can

interface with actuator devices (e.g., insulin pumps) to execute

actions suggested by the ML-enabled app. Together, the ML-

enabled app and connected peripheral devices form the BGMS.

Figure 1 shows an end-to-end schematic representation of

an ML-enabled BGMS. The glucose monitor records the blood

glucose levels of the patient at regular time intervals and

transmits them to the app over a Bluetooth communication

channel. The app uses these values for data visualization and

also sends them to a cloud server over the Internet for storage

and processing by the AI/ML engine. Finally, the predicted

insulin dose is either displayed on the app or sent to the

automated insulin pump attached to the patient’s body.

Security Risks. We consider a scenario where an adversary

intends to cause harm to a targeted user of the BGMS

app by forcing the BGMS to inject a high dose of insulin

into the user’s body when it is not supposed to, or vice

versa. We further assume that the insulin pump used by the

target is secure against known vulnerabilities [21] and that

the ML engine runs on a secure cloud server. Under such
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circumstances, the adversary can still force the ML engine

to mispredict the insulin dose by injecting carefully crafted

adversarial data points into it via the peripheral devices. For

instance, the adversary can modify the blood glucose values

sent to the ML engine [10], by exploiting vulnerabilities in the

third-party glucose monitor interfaced with the BGMS app.

The Dreamed Advisor Pro app is compatible with all non-

continuous glucose meters with regulatory approval and nine

different models of continuous glucose monitors manufac-

tured by different companies [22]. Commercial glucose meters

have been known to have firmware vulnerabilities [23] that

would allow an adversary to change the blood glucose level

readings that are sent by the glucose meter to the BGMS

app. Alternatively, an adversary could also exploit known

vulnerabilities in the Bluetooth communication protocol [21]

to launch a man-in-the-middle attack and change the blood

glucose level readings. Furthermore, these glucose monitors

are also susceptible to physical attacks that can be carried out

with electromagnetic radiation [24]. Additionally, vulnerabili-

ties in devices and communication links in the end-to-end data

processing pipeline, such as mobile devices and routers, can

be exploited to manipulate blood glucose measurements.

C. Unique Security Risks in AI/ML-enabled Medical Systems

The security risks discussed in the context of the BGMS app

apply to any ML-enabled medical device connected to multiple

peripheral devices (often manufactured by other companies)

at deployment. A security breach in any of these peripheral

devices could enable an adversary to manipulate data sent

to the ML engine, resulting in mispredictions regarding the

patient’s condition. These mispredictions pose a direct threat

to the patient’s health.

Manufacturers of ML-enabled devices face two challenges

in anticipating and assessing the aforementioned security risks

during design and manufacturing. First, these devices are built

to be compatible with a diverse range of peripheral devices

for the operational convenience of the consumers. This makes

it difficult for the manufacturer to predict what peripheral

devices the consumer would connect with the ML-enabled

device at deployment, and what vulnerabilities those devices

might have. The interplay of different vulnerabilities would

enable an adversary to perform different types of attacks on

the ML engine, which makes it challenging to analyze the risk

via the in-silo testing performed today. Second, while ML-

enabled connected systems are used in many domains such

as smart homes and industrial control systems, performing

risk analysis of medical systems is more difficult as physi-

ological data is much more complex and varies widely across

individuals [25]. Consequently, the impact of manipulating

physiological data might be different for different patients.

Manufacturers typically prioritize accuracy and failures in non-

adversarial scenarios, but a comprehensive end-to-end security

risk analysis should consider the impact of adversarial inputs

on different patients and the feasibility of attacks.

For instance, in the BGMS attack in Section II-B, the adver-

sary attempts to generate inaccurate insulin dosage predictions

by introducing adversarial inputs to the ML engine. Most

known attacks on ML engines [2]–[16] require the adversary to

observe and manipulate at least a subset of input sensor values

to alter the predicted insulin dose. The adversary’s efficiency in

crafting adversarial inputs increases with greater observability

into different sensor values. In Section II-B, we assumed

the adversary could only manipulate glucose level readings

through vulnerabilities in the glucose meter or the Bluetooth

link. However, if the adversary can observe commands sent to

the insulin pump, they could craft adversarial glucose meter

readings to yield a higher success rate with equal or fewer

perturbations. While unauthorized read access to an individual

insulin pump poses a low-level risk, in the context of the entire

BGMS, it becomes a high-level risk.

III. ATTACKS ON ML-BASED SYSTEMS AND THEIR

RELEVANCE IN THE HEALTHCARE DOMAIN

Motivated by the BGMS example in Section II, we system-

atically investigate a subset of FDA-approved AI/ML-enabled

medical devices/software [1] to identify potential security risks

at deployment. We perform this investigation in two steps.

First, we identify the ML techniques used by each of the

devices/software systems. We survey existing work in the

domain of AI/ML security to understand what types of attacks

may target these techniques (Section III-A). Next, for each

of these devices/software, we examine the practicality of the

attack scenarios identified in the previous step ( SIII-B).

Selecting medical systems for our investigation. As of

December 2022, the U.S. FDA has approved 521 ML-enabled

medical devices 2 across 15 different physiological panels.

However, there is no automated risk analysis technique today,

and analyzing all the 521 devices manually would be arduous

and time-consuming. Therefore, we selected a subset of these

devices for manual analysis. We used the following selection

criteria to ensure a fair representation of the set of devices.

1) We select at least one device from each physiological panel

to study if risks due to vulnerabilities in peripheral devices

are common across all medical domains;

2) Within the same physiological panel, we select devices that

perform different types of diagnosis or treatments, to ensure

coverage across different medical activities.

3) We select an equal number of two types of ML-enabled

devices - software that can be installed on the consumer’s

pre-existing device, and software that is sold bundled with

proprietary hardware. This would help us understand if one

of these is more secure than the other;

4) We select devices that are used in hospitals and clinics

under medical supervision, as well as devices that are

used by patients at home without medical supervision. This

would help us understand if the environment in which the

medical device is deployed affects its security.

Additionally, to ensure that sufficient information is avail-

able for each selected device, e.g., the ML algorithm used,

2As per the terminology used by the FDA website, the term ‘device’ refers
to both physical devices as well as software solutions.
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the type of data processed, etc, we select 20 different devices

across 13 of the 15 physiological panels, as shown in Table I.

Unfortunately, due to insufficient information, we could not

select any device from the Dental and Hematology panels.

A. Known Attacks on ML Algorithms Used by FDA-Approved
Medical Devices

Table I presents our study of the ML algorithms used

by the devices we selected for our evaluation. Our goal is

to understand if there are known attacks against these ML

algorithms that can be used by adversaries to make these ML

engines mispredict the outcome. We also examine the types of

tasks for which these ML algorithms are used, and the worst-

case consequences of misprediction by the ML engine.

Survey Process. We performed the following steps to identify

known attacks on the ML algorithms used by the devices.

Step 1. Identifying the ML algorithm and input features used
by the device: We analyze device information available in the

Premarket Notification summaries submitted by manufacturers

to the FDA during the approval process. These summaries are

available on the FDA website [1], and contain crucial details

such as the ML algorithm and the type of data processed.

However, for some devices, like GI Genius, the summaries

lack specific information about the ML algorithm. In such

cases, we explore the manufacturer’s website and, if even

that is inadequate, we estimate the ML algorithm based on

the device’s task and processed inputs. We look for known

ML algorithms that perform the same task using similar input

features. For example, for GI Genius, we found a relevant

paper [26] that performs gastrointestinal lesion detection (the

same task performed by GI Genius) with a high accuracy using

Convolutional Neural Networks (CNN).

Step 2. Identifying known attacks on the ML algorithm: We

search for known attacks in the literature that target the ML

algorithms identified in Step 1. We focus on attacks described

in research papers published in both conferences and journals.

The discovery of such attacks does not definitively establish

the vulnerability of the ML engine in the device under con-

sideration. Rather, it identifies potential risks, emphasizing the

need for systematic risk identification and mitigation.

Step 3. Estimating worst-case impact of mispredictions: We

estimate the worst-case impact of mispredictions by these

devices from our understanding of the device functionality and

description provided by the manufacturer, either in the device

summary or on their website. We deem the misprediction to

be potentially fatal if the device is used for the treatment or

diagnosis of a patient in medical emergencies, and a medical

expert would not have enough time to assess the correctness

of the device output. For instance, the NuVasive Pulse System

is used by surgeons during spinal surgeries for continuously

monitoring the neurophysiological status of the patient, and a

misprediction by the device would be potentially fatal.

Insights. We obtained the following insights from the infor-

mation that we gathered using the aforementioned process.

1) We observed that the majority of the ML algorithms are

vulnerable to inference-time attacks, with a few suscep-

tible to training-time attacks. Both of these pose major

health risks for patients. However, executing inference-

time attacks is comparatively easier for adversaries as

they demand fewer adversarial inputs than training-time

attacks. Most of the devices prone to training-time attacks

are deployed in hospitals or diagnostic centers, where a

shared set of peripheral devices is used to collect data from

multiple patients. If adversaries successfully compromise

these peripheral devices over an extended period, they can

manipulate sufficient patient data to poison the training

dataset 3. This would affect a large number of patients.

Examples include the Deep Learning Image Recognition

Software, and the Oxehealth Vital Signs monitor.

2) Even when the devices are operated by medical practi-

tioners, detecting a misprediction might be challenging for

two reasons. First, physiological data exhibit significant

variance even among patients with the same medical con-

dition, owing to diverse underlying health conditions and

demographic factors [27]. Second, many devices are used

for infrequently performed diagnoses/medical procedures,

or are used only for medical emergencies. Under such

circumstances, the lack of the particular patient’s historical

physiological information makes it challenging for the

medical practitioner to detect an anomaly. Examples are

Cardiologs ECG Analysis Platform, GI Genius, ABMD

Software, and NuVasive Pulse System.

3) Some devices (e.g., the One Drop Blood Glucose Mon-

itoring System), are used by patients at home without

continuous medical supervision. Detecting a misprediction

from such devices would be much more challenging than

devices that are directly operated by medical practitioners.

4) Many of these devices are used in clinics and hospitals

for disease diagnosis, treatment, and patient monitoring.

However, a few are used by patients at home. Hospitals and

clinics would typically have a higher security budget than

individual patients at home, and hence have better security.

Consequently, designing a one-size-fits-all security solution

for ML-enabled medical systems is challenging. Therefore,

while designing security solutions for medical devices, the

implementation effort and cost should be considered.

5) Some of the ML-enabled softwares are sold bundled with

proprietary hardware (i.e., software-in-medical-device),

while some can be installed by the user on any general-

purpose computer (i.e., software-as-medical-device). The

latter have a broader threat surface due to diverse combi-

nations of hardware, software, and Operating System (OS)

vulnerabilities across various general-purpose computer

models, making the assessment of risk severity challenging.

B. Analyzing the Functionality and Vulnerability Landscape
of FDA-approved (AI/ML)-Enabled Medical Devices

We investigate how an adversary can exploit the vulnera-

bilities identified in §III-A. Table I shows that all the identi-

fied ML attacks involve manipulating inputs during training

3Many systems undergo periodic re-training on recent physiological data.
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Sl.
No.

Device
Name [1]

Physiological
Panel

Device
Functionality User

Type of
ML algo

used

Type of
data

processed

Known
attacks

(Attack type)

Potential
impact of

misprediction

1

CardioLogs
ECG Analysis

Platform†
Cardiovascular

Cardiac
arrhythmia

detector

Medical
practitioners

Deep Neural Network
(DNN)

Image Chen et al. [2] I
Wrong

treatment
(Fatal)

2
Oxehealth

Vital Signs† Cardiovascular

Camera-based
monitor for heart,

pulse, and
respiratory rate

Medical
practitioners

Hybrid
convolutional Long
short term memory
networks (LSTM)

Video
Albattah

et al. [3] T,I
Wrong

treatment

3 GI Genius‡ Gastroenterology/
Urology

Gastro-
intestinal

lesion
detection

Medical
practitioners

Convolutional
neural

networks (CNN) ∗
Video Amin et al. [28] T

Wrong
diagnosis

4 SOZO‡ Gastroenterology/
Urology

Body fluid
analyzer for

assessing
protein-calorie
malnutrition

Medical
practitioners

CNN ∗ Numeric Byra et al. [29] I Wrong
diagnosis

5
WellDoc

BlueStar† General hospital
Diabetes

management

Medical
practitioners,

patients

Darknet-53
CNN

Numeric Lal et al. [4] I Wrong
diagnosis

6 d-Nav System† General hospital
Insulin dose

predictor

Medical
practitioners,

patients

Multi-layer
perception (MLP)

and LSTM
Numeric Zhou et al. [30] I

Wrong
treatment

(Fatal)

7
MBT-CA

System‡ Microbiology Spectometry
Medical

practitioners
DNN ∗ Numeric

Meiseles

et al. [5] I

Wrong
diagnosis

(Fatal)

8 KIDScore D3† Obstetrics &
Gynaecology

Embryo image
assessment

Medical
practitioners

Decentralized
federated learning

Image Nguyen et al. [31] P Wrong
diagnosis

9
NuVasive

Pulse System‡ Orthopedic
Neurological
monitoring

Medical
practitioners

CNN ∗ Image Joel et al. [6] I Mistake in
surgery (Fatal)

10 ABMD Software† Radiology
Bone

densitometer
Medical

practitioners

Inception-v3
and

Densenet-121 ∗
Image Bortsova et al. [7] I Wrong

diagnosis

11

Deep Learning
Image

Reconstruction†
Radiology

X-ray
reconstruction

Medical
practitioners

ResNet-18 Image
Menon et al. [8] T

Paul et al. [32] I

Wrong
diagnosis

12 Air Next‡ Anesthesiology Spirometer
Medical

practitioners
CatBoost

ResNet-50 ∗ Image Vargas et al. [9] I Wrong
diagnosis

13

One Drop
Blood Glucose

Monitoring

System‡

Clinical
Chemistry

Diabetes
management

Patients MLP Numeric
Levy-Loboda

et al. [10] I

Wrong
treatment

(Fatal)

14

OTIS 2.1 and
THiA Optical

Coherence
Tomography

System‡

General and
Plastic Surgery

Human tissue
imaging

Medical
practitioners

Support Vector
Machines

(SVM)
Image Ma et al. [16] I Wrong

diagnosis

15
EarliPoint

System‡ Neurology

Diagnosis of
Pediatric

Autism Spectrum
Disorder

Medical
practitioners

Graph Neural
Network
(GNN)

Image Chen et al. [11] T Wrong
diagnosis

16 BrainScope TBI‡ Neurology
Brain injury
assessment

Medical
practitioners

CNN +
Recurrent neural
networks (RNN)

Numeric Yu et al. [12] I
Wrong

treatment
(Fatal)

17 IDx-DR v2.3† Ophthalmic
Diabetic

Retinopathy
Detection

Medical
practitioners

Federated
learning

Image Nielsen et al. [13] I
Wrong

diagnosis
(loss of vision)

18

Iris Intelligent
Retinal Imaging

System†
Ophthalmic

Storage,
management and
display of retinal

images

Medical
practitioners

DNN Image
Mangaokar

et al. [14] I

Wrong
diagnosis

(loss of vision)

19 Paige Prostate† Pathology
Cancer

diagnosis
Medical

practitioners
CNN Numeric Hu et al. [15] T Wrong

treatment (Fatal)

20
Tissue of Origin

Test Kit‡ Pathology
Malignant Tumor

diagnosis
Medical

practitioners
SVM Image Ma et al. [16] I Wrong

treatment (Fatal)

TABLE I: A study of different FDA-Approved ML-enabled medical devices and their security vulnerabilities
†: Software as medical device, ‡: Software in medical device, ∗: Best-guessed ML algorithm,

T : Training-time attack, I : Inference-time attack, P : Privacy attack

101

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:44:58 UTC from IEEE Xplore.  Restrictions apply. 



or inference. For each ML-enabled device, we search for

compatible peripheral devices and communication channels

that would allow adversaries to introduce malicious data into

the ML engine. We also assess the adequacy (or the lack

thereof) of manufacturers’ risk assessments, as mentioned in

their Premarket Notifications, to determine their effectiveness

in preventing such security risks. Table II presents this study.
Survey Process. To understand the vulnerability landscape

of each device, we performed the following two steps.
Step 1. Identifying peripheral devices and communication
media compatible with the ML-enabled device: We identify

compatible peripheral sensor devices, communication media,

and operating system from its Premarket Notification sum-

mary [1] and information on the manufacturer’s website. One

or more of these can be a potential point of attack.
Step 2. Identifying vulnerable peripherals that can be exploited
for attacking the ML engine: For each potential attack point,

we look for known attacks and vulnerabilities by searching

research papers and vulnerability databases [33], [34]. We

list at least one vulnerability that would allow an adversary

to eavesdrop or inject malicious data into the ML engine,

enabling them to execute the attacks identified in §III-A. This

list of vulnerabilities is not comprehensive. We highlight at

least one vulnerability to motivate the risk analysis technique.

Insights. We summarize the insights from this study below.

1) We found known vulnerabilities in the peripheral devices

compatible with several ML-enabled devices. While most

vulnerabilities affect only a small group of devices, a few

vulnerabilities affect all devices of a certain type. For

instance, the Conexus telemetry protocol vulnerability [35]

only affects the ECG monitors from Medtronic. However,

another attack [36] affects all infrared-sensitive cameras.

2) Some vulnerabilities (e.g., [35] for the Cardiologs ECG

Analysis Platform, and [36] for Oxehealth Vital Signs)

require the adversary to execute the attack locally as they

have to be within the Bluetooth [35] communication range,

or within the range of infrared light emission [36]. Such

attacks can be executed by insiders or by breaching the

physical security of the hospital or the patient’s home.

3) Many of the vulnerabilities can be exploited remotely (e.g.,

[37] for Oxehealth and [38] for the IDx-DR) over the

Internet. Since connectivity to the Internet is mandatory

for these devices, preventing remote attacks is challenging.

4) In some cases, identifying the attack path is challenging.

For example, the IDx-DR software relies on inputs from

the Topcon NW200 Fundus camera. Although we found no

known vulnerability in the camera, it comes bundled with a

computer running Windows 7 by default, which has known

vulnerabilities [38]. These Windows 7 vulnerabilities could

enable an adversary to inject malicious inputs into the ML

engine. While updates for Windows 7 may address such

vulnerabilities, medical devices typically do not receive

routine security updates. In a specific case [38], the vendor

even decided not to release a patch, assuming most users

would upgrade to Windows 10.

5) We did not find any known vulnerability in the peripheral

devices for some systems (e.g., SOZO, WellDoc Blues-

tar, and Air Next). However, many of these systems use

Bluetooth, Internet communications, and web services.

Adversaries can exploit vulnerabilities [21] in these com-

munication channels for injecting adversarial inputs.

6) We found that many of the ML-enabled device manufac-

turers (e.g., the NuVasive Pulse System) do not perform

any security evaluation, and only focus on accuracy and

safe operating conditions (e.g., protecting the devices from

electrical hazards). Even the manufacturers who consider

security, rarely consider the peripheral devices. For in-

stance, the developers of the IDx-DR software evaluate the

software for various security risks, but not its peripheral

device, the Topcon NW200 Fundus Camera. However, se-

curity evaluation of the software alone is insufficient. This

is because an adversary might execute the inference-time

attack [13] shown in Table I by exploiting the vulnerability

in the camera [38] to install malware that manipulates the

images that are sent to the input of the ML engine.

IV. CASE STUDY

We present a case study to demonstrate the security risks in

the ML-enabled BGMS described in Section II-B. We show a

practical attack on the BGMS in which the attacker exploits

the vulnerabilities in connected devices to negatively affect the

predictions of the ML-enabled decision-making component 4.

A. Attack Description

Adversarial Goal. The attacker aims to endanger a targeted

patient’s life by causing the ML model to misdiagnose the

patient’s condition, thereby leading to an incorrect insulin

dose suggestion. While minor prediction errors are benign,

a substantial error could have life-threatening consequences.

In this case study, we consider an attacker aiming to make

the model predict a high blood glucose level (hyperglycemia)

when the patient actually has a low (hypoglycemia) or normal

blood glucose level. If the attacker succeeds, the BGMS would

erroneously recommend more insulin, causing the patient’s

glucose level to drop significantly below normal. The impli-

cations range from incorrect diagnosis (e.g., in the WellDoc

BlueStar system) to incorrect treatment (e.g., in d-Nav and One

Drop BGMS systems), potentially leading to fatal outcomes.

Adversarial Capabilities. We assume the attacker has reason-

able and realistic capabilities, wherein they can only tamper

with the CGM measurements. Manipulating the manually

entered finger-based glucose readings, carbohydrate intake,

and bolus dose is beyond the attacker’s capabilities. However,

the attacker can compromise the smartphone [48] to gain read-

only access to these values once they have been gathered from

external sensors or after being manually entered by the patients

in the mobile app. The attacker is oblivious to the structure and

parameters of the underlying ML model (black box attack),

4No human subjects were used in our experiments. Instead, we rely on
a publicly available anonymized dataset and a publicly available prediction
model that resembles the original model in terms of functionality and features.
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Sl.
No.

Device
Name Risk assessment guideline followed

Known attacks and
vulnerabilities in compatible

peripheral sensor devices

Connected to
the Internet

or Bluetooth ?

1
CardioLogs ECG Analysis

Platform†
Inadequate information - Acknowledges the need for
cybersecurity of cloud-based software Portable ECG Monitors - { [35]} L

Cellular network,
Bluetooth

2 Oxehealth Vital Signs† Guidance for the Content of Premarket Submissions for
Management of Cybersecurity in Medical Devices [39]

Infra-red sensitive cameras

- [36] L , { [37]} R Intranet / Internet

3 GI Genius‡
Moderate level of concern as defined in the
“Guidance for the Content of Premarket Submissions
for Software Contained in Medical Devices.” [39]

Endoscope cameras - { [40]} R Intranet / Internet

4 SOZO‡ None No third-party peripheral device used
Bluetooth,
Intranet/Internet

5 WellDoc BlueStar† Guidance for the Content of Premarket Submissions for
Management of Cybersecurity in Medical Devices [39]

No vulnerability identified in peripheral
sensor devices

Bluetooth,
Cloud Service API

6 d-Nav System† Guidance for the Content of Premarket Submissions for
Management of Cybersecurity in Medical Devices [39]

No vulnerability identified in peripheral
sensor devices

Cloud Service API

7 MBT-CA System‡ None No third-party peripheral device used No

8 KIDScore D3† None
No vulnerability identified in peripheral
sensor devices

Intranet / Internet

9 NuVasive Pulse System‡ None
Infra-red sensitive cameras

- [36] L , { [37]} R Internet

10 ABMD Software† None
No vulnerability identified in peripheral
sensor devices

Unknown

11
Deep Learning

Image Reconstruction† None X-ray machines - { [41]} R Unknown

12 Air Next‡ None No third-party peripheral device used
Bluetooth,

Internet

13
One Drop Blood Glucose

Monitoring System
None No third-party peripheral device used

Bluetooth,
Internet

14
OTIS 2.1 and THiA Optical

Coherence Tomography System
ANSI AAMI ISO 14971:2007/(R)2010 [42],
IEC 62304:2006/A1:2015 [43]

No third-party peripheral device used Unknown

15 EarliPoint System‡ None
Webcams installed on personal

computers - [44] R Internet

16 BrainScope TBI‡ None No third-party peripheral devices used Internet

17 IDx-DR v2.3†

Considers security concerns related to data
confidentiality, integrity, availability, denial of service
attacks and malware. Risks related to the failure of various
software components and their potential impact on
patient reports were also adequately addressed [45].

This device uses the Topcon NW200
Fundus camera, which comes packaged
with a PC running Windows 7 OS. The
Windows 7 OS has known

vulnerabilities. - { [38]} R

Internet

18
Iris Intelligent Retinal Imaging

System† Ensures HIPAA [46] compliance
Retinal cameras such as Topcon
NW200 - Same vulnerable peripherals
as in the case of IDx-DR v2.3

Internet

19 Paige Prostate†

Considers software security as per “Content of Premarket
Submissions for Management of Cybersecurity in
Medical Devices: Guidance for Industry and Food and
Drug Administration Staff". Also encrypts the
communication between the device and servers.

Medical scanners - { [47]} L Internet

20 Tissue of Origin Test Kit‡ None No third-party peripheral device used Internet

TABLE II: Known vulnerabilities in peripheral devices and communication media compatible with FDA-approved

ML-enabled medical devices. L : Locally exploitable only, R : Remotely exploitable

and does not have access to the training set. The attacker can

attack the Bluetooth communication stack via known exploits

[21] to intercept and manipulate the CGM measurements. This

is because the FDA-approved diabetes management devices

(e.g., One Drop and WellDoc BlueStar) use Bluetooth com-

munication to transmit the collected measurements.

Attack Strategy. The attacker aims to misdiagnose the patient

as hyperglycemic by pushing predicted blood glucose levels

toward the hyperglycemic range. This involves modifying

hypoglycemic or normal blood glucose levels to values exceed-

ing 125 mg/dL (hyperglycemic while fasting) or 180 mg/dL

(hyperglycemic postprandial). To achieve this, the attacker

manipulates CGM readings for a specific duration, causing

the BGMS app to misdiagnose the patient’s blood glucose

level. Determining the minimum time duration and extent of

manipulation requires careful consideration.

B. Experimental Setup

We first present the ML model used in the BGMS setup, fol-

lowed by a description of the dataset used for our experiments.

Next, we describe the Universal Robustness Evaluation Toolkit

(URET) [49], used for generating the adversarial inputs.

Targeted ML model. Since the specific ML algorithm used

in the Dreamed Advisor Pro app (described in Section II-B) is

confidential, we approximated it using a time-series prediction

model developed by Rubin-Falcone et al. [20]. This model

uses a bidirectional long short-term memory (LSTM) recurrent
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neural network (RNN) architecture, and uses root mean square

error (RMSE) and mean absolute error (MAE) to evaluate the

prediction accuracy. Intuitively, both RMSE and MAE indicate

the difference between predicted and actual glucose levels. The

higher the difference, the worse the prediction. Further, our

chosen target model uses a neural network similar to the FDA-

approved d-Nav System [50] in Tables I and II (i.e., LSTM).

Rubine-Falcone et al. [20] built two models - (i) a person-

alized model for each patient trained on the patient’s data, and

(ii) an aggregate model trained on the data of all patients. Their

average RMSEs are 18.2 and 31.7, and average MAEs are 12.8

and 23.6 on the 30 and 60-minute horizons, respectively.

Dataset. To demonstrate the impact of adversarial inputs

on the predictions of the targeted ML model, we use the

2020 OhioT1DM dataset [51]. This was used by the target

model developers [20] for evaluating its accuracy. The dataset

comprises physiological measurements of six Type-1 diabetic

patients. The main features are CGM blood glucose mea-

surements, finger-based measurements, basal insulin, bolus

dose, carbohydrate intake, heart rate, sleeping patterns and

acceleration, besides other physiological, and self-reported

life-event features. The dataset spans eight weeks and consists

of ≈10000 samples for training, and 2500 for testing, both

recorded at approximately 5-minute intervals per patient.

Universal Robustness Evaluation Toolkit (URET). In Table

I, we found three diabetes management devices (5,6, and

13) that are vulnerable to inference-time attacks. Hence, we

decided to launch an evasion attack against our target model,

which manipulates data points at inference time by introducing

slight perturbations to their original values to evade detection

by the ML model and cause misclassification [52]. We use

URET [49], a general-purpose framework for generating ad-

versarial inputs for evasion attacks. Unlike most evasion attack

techniques that focus on the image classification domain [32],

[53]–[55], URET can generate adversarial inputs regardless of

the data types or task domain.

URET takes in a benign input instance and a set of pre-

defined input transformations and attempts to find a sequence

of transformations (e.g., increment or replace glucose level)

resulting in an adversarial input that is both semantically and

functionally correct. The URET framework is compatible with

a wide variety of data types and domains and allows the user

to specify which feature values to manipulate, and bounds and

constraints on the feature values. As URET allows specifying

constraints on the feature values, we can ensure the generated

adversarial samples abide by victims’ physiological limits.

Since we assume the attacker can only modify CGM values,

we specify the CGM feature indices in URET’s configuration

file as the only modifiable feature. To ensure that adversarial

CGM values respect the physiological levels, we constrain

them to be between 125 and 499 mg/dL for fasting levels, since

a hyperglycemic glucose level in a fasting state should exceed

125 mg/dL, and between 180 and 499 mg/dL for postprandial

levels, since a hyperglycemic glucose level in a postprandial

state should exceed 180 mg/dL (499 mg/dL is the highest

reported glucose level in the OhioT1DM dataset). Further,

Fig. 2: RMSE of the benign model, the model attacked with

fasting hyperglycemic blood glucose levels, and with

postprandial hyperglycemic blood glucose levels.

since there are missing physiological measurements at specific

timestamps in the dataset, especially CGM measurements, we

specify the relationship between CGM glucose and a feature

called “missing” as a dependency. This ensures the ML model

does not interpret the missing CGM values as zero values.

In addition, the attacker can observe other feature values

(e.g., bolus dose), which in turn play a role in adversarial

data generation, since the attacker needs read access to those

features to use the loss function to rank the adversarial input.

C. Results

While the target models use RMSE and MAE to evaluate

the prediction accuracy, we consider the RMSE results only,

as the two metrics show similar behaviors. Figure 2 shows the

performance of personalized patient models and the aggregate

model trained on all patients’ data (‘All patients’) before and

after the URET attacks while fasting and postprandial. The

maximum RMSE value for the benign models is around 21

mg/dL, while the average RMSE across all 7 benign models

is around 18.3 mg/dL. The figure also shows the RMSE values

after the attack for both fasting (>125 mg/dL) and postprandial

(>180 mg/dL) hyperglycemic glucose levels. Thus, the RMSE

values increase regardless of the used threshold since glucose

values are driven further away from the actual values.

Moreover, postprandial RMSE values are consistently

higher than fasting RMSE values due to the use of a higher

threshold for the lower bound of the adversarial input (i.e.,

180 mg/dL instead of 125 mg/dL). The hike in RMSE values

between the benign and the attacked models in both cases

shows a significant difference between the actual and predicted

blood glucose levels, implying diminished accuracy of the ML

model. This would cause a potentially fatal insulin overdose.

Figures 3 and 4 show the percentage of instances that are

misdiagnosed as hyperglycemic while actually being normal

and hypoglycemic, respectively, for both the fasting and post-

prandial attack scenarios. A higher misclassification percent-

age demonstrates more susceptibility to the respective attack

scenario, while a lower percentage implies more difficulty

in crafting successful attacks. We make three observations

from the two figures. First, URET achieves considerably
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Fig. 3: Percentage of originally normal glucose instances that

are misclassified as hyperglycemic.

high attack success rates, reaching up to 100% in some

cases. URET achieves comparable attack success rates in both

normal-to-hyperglycemic and hypoglycemic-to-hyperglycemic

scenarios on average, demonstrating the robustness of the

attack generated by URET across different initial glucose

levels. Second, the attack success rate is consistently higher

during fasting compared to postprandial states, indicating that

attacking a fasting patient is relatively easier for the adversary.

This is because a smaller amount of perturbation is performed

when increasing the CGM glucose from the original value

to fasting hyperglycemic levels as opposed to postprandial

hyperglycemic levels. This confirms that URET is more suc-

cessful when the perturbation margin is smaller. Third, patients

exhibit varying resilience to the URET attacks. For example,

Figure 3 shows that the success rate of misdiagnosing a patient

from normal to hyperglycemic is the lowest for patient 2

(67.4% fasting, and 44.2% postprandial) and is the highest for

patient 5 (100.0% fasting, and 97.9% postprandial) suggesting

that it is more challenging for URET to attack patient 2

compared to patient 5. Similarly, Figure 4 shows that the attack

success rate of misdiagnosing a patient from hypoglycemic to

hyperglycemic is the lowest with patient 3 (72.4% fasting, and

28.0% postprandial) and is the highest with patient 5 (100.0%

fasting, and 100.0% postprandial) suggesting that patient 5 is

more vulnerable compared to patient 3. We hypothesize that

this is because the rich history of some patients leads to a

more robust prediction model that is more difficult to attack.

Summary. We demonstrated an attack where an attacker

compromises the Bluetooth communication between the CGM

peripheral device and the BGMS mobile app, enabling them

to manipulate the measured glucose levels. The experimental

results show that the attacker can cause the ML model to

misdiagnose the patient’s medical condition as hyperglycemic.

In the best-case, this leads to a wrong diagnosis, and in the

worst-case , it has fatal consequences for the patient.

D. Discussion: Attack Practicality and Broader Impact

The assumptions made in the proposed attack are practical

and align with previously demonstrated attacks [21]. While no

real attack on a BGMS has been reported, security breaches in

other medical devices, such as pacemakers, have been reported

Fig. 4: Percentage of originally hypoglycemic glucose

instances that are misclassified as hyperglycemic.

in the recent past [56]. The severity of these breaches is evident

from the widespread recall of multiple pacemaker models and

the substantial financial loss incurred by the manufacturer [57].

These incidents also raised concerns about targeted attacks on

high-profile individuals using such devices. For example, in

2013, former US Vice President Dick Cheney revealed that

he had the wireless capabilities of his implanted pacemaker

deactivated due to fears that an adversary could cause a cardiac

arrest by sending a malicious signal to his pacemaker [58].

V. RISK ASSESSMENT TECHNIQUES EVALUATION

We assess the state-of-the-art risk assessment techniques,

investigating both their strengths and limitations. We discuss

the benefits of these methods in risk analysis processes while

pointing out their shortcomings using the BGMS attack exam-

ple. Finally, we highlight the need for a new risk assessment

framework for ML-enabled connected medical systems.

A. A Survey of Existing Techniques

We consider five broad categories of risk assessment meth-

ods. However, in the context of ML-enabled connected med-

ical devices, these techniques often lack in three key aspects:

(1) impact on affected users (more users affected, higher risk),

(2) ease of vulnerability detection (easier detection, lower

risk), and (3) ease of post-exploitation mitigation, including

available remediation levels and responsible entities. Table III

presents the extent to which existing risk assessment methods

incorporate these factors. We describe the methods below.

DREAD. DREAD [59] is a risk rating system built by Mi-

crosoft, primarily for evaluating risks posed to conventional

web applications based on their damage potential, repro-

ducibility, exploitability, affected users, and discoverability.

However, the DREAD system cannot be used for ML-enabled

connected medical systems. This is because DREAD does not

detail how security risks in individual connected components

may pose a threat to the overall system.

STRIDE. STRIDE [59] by Microsoft is another qualitative

model designed to identify and categorize threats in web ap-

plications. It addresses six attack types: Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service, and
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Method Damage
Potential Exploitability Affected

Users Detectability Ease of
Mitigation

DREAD � � � � �

STRIDE � � � � �

FMEA � � � � �

CVSS � � � � �

Other Works
[61], [62] � � � � �

TABLE III: Comparison of factors considered in existing

risk analysis frameworks

Elevation of Privilege, and offers corresponding countermea-

sures. However, using STRIDE for an end-to-end risk assess-

ment in ML-based medical systems is challenging because it

does not account for adversaries exploiting peripheral devices.

FMEA. Failure Modes and Effects Analysis (FMEA) [60]

is a foundational analytical technique to detect and mitigate
potential risks. This method involves a detailed examination of

system components to identify potential causes of failure and

their impact on system stability. However, it fails to provide

end-to-end risk assessment for connected ML-based medical

systems because it primarily focuses on individual component

failures, overlooking broader systemic implications and how

vulnerabilities propagate throughout the entire pipeline.

CVSS. The Common Vulnerability Scoring System

(CVSS) [63] is an open risk scoring framework designed

by FIRST.Org, Inc. to capture the severity level of software

vulnerabilities. CVSS comprises three metric groups: Base,

Temporal, and Environmental, capturing different vulnerability

characteristics. While it is not a risk assessment model [63],

it helps prioritize threats across system components through

context-specific choices made by the risk management team.

However, it lacks consistency in prioritizing metrics, notably

in ML-enabled medical devices where availability loss could

be life-threatening, unlike in web applications where it might

lead to user dissatisfaction or financial repercussions [64].

FDA-approved Security Standards for Medical Devices.
The FDA has established a cybersecurity guideline to help

the industry identify cybersecurity risks in medical devices

[39]. However, their primary focus is on risks associated with

communication between medical devices and IT networks.

Consequently, addressing vulnerabilities in AI/ML-enabled

medical devices that do not interface with an IT network

remains a challenge.

Academic Research Efforts and Industry. There has

been a rich literature on performing risk assessment within

the healthcare sector [61], [62]. While companies typically

conduct preliminary risk evaluations for their ML models, they

do not analyze the security risks associated with deploying the

models in a connected healthcare environment [65]. Rather,

their concern is ensuring the ML model is trained on an

unbiased dataset, and evaluated using a diverse dataset. Simi-

larly, while there are companies that claim to offer penetration

testing services for medical devices, their testing is conducted

in-silo rather than on the end-to-end connected system.

Fig. 5: Security risk assessment techniques by manufacturers

of FDA-approved ML-enabled medical systems based on [39]

B. Limitations of Existing Techniques

We use the ML-enabled BGMS as an example to highlight

the shortcomings of existing techniques in adequately consid-

ering all the factors required for an ideal risk analysis.

DREAD. DREAD fails to assess the actual potential damage

if a peripheral device like the glucose meter or smartphone

is compromised. In such cases, the attacker can not only

access the data but also to manipulate it, thereby compromising

both the integrity and confidentiality of the system. However,

DREAD cannot differentiate between them accurately.

STRIDE. An attacker can manipulate data in several ways

before it is fed into the ML engine. Nevertheless, according

to the STRIDE model, all these methods are categorized under

Tampering, without any additional insights into how these

manipulations were performed.

FMEA. FMEA could potentially assess the risks associated

with individual peripheral devices in the BGMS, like glucose

meters or smartphones. However, FMEA does not offer in-

sights into the risks associated with the propagation of this

vulnerability within the system or its potential impact on the

ML model’s predictions.

CVSS. When a vulnerability impacts the availability of the

BGMS, the CVSS assigns the same risk level as it would

for a similar incident in other domains like web applications.

This approach is not appropriate, as an availability issue in the

BGMS could potentially lead to irreversible harm to patients.

FDA-approved Security Standards for Medical Devices.
Encountering physical attacks like electromagnetic interfer-

ence [24] is independent of the connectivity between the

glucose meter and the IT network. Hence, the FDA-approved

security standards also fall short of an ideal risk analysis.

C. Need for a New Risk Assessment Framework

Our investigation into the types of security risk assessment

performed by manufacturers of ML-enabled medical devices

is summarized in Figure 5.We find that over 80% of these

manufacturers either do not provide information about the

assessment in their documentation, or employ inadequate

assessment methods. Another 5% use proprietary mechanisms,

making it challenging to assess the adequacy of their approach.

The remaining 12% utilize existing risk assessment techniques,

which, as discussed, are insufficient for risk assessment of ML-

enabled connected medical systems. Therefore, developing an
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efficient risk assessment technique for ML-enabled medical

devices remains an open challenge.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

We conducted a detailed study of security risks associated

with modern AI/ML-enabled medical devices, stemming from

vulnerabilities in connected peripheral devices. We conducted

a systematic security analysis of FDA-approved commercial

AI/ML-enabled devices. Our analyses reveal vulnerabilities of

these devices to existing adversarial attacks, raising concerns

about the suitability of using such safety-critical devices on

real-world patients. To validate our analysis, we executed

a realistic adversarial attack on an ML-enabled blood glu-

cose monitoring system, identifying security risks in the

process. Additionally, we studied state-of-the-art risk assess-

ment frameworks, underscoring their limitations in identifying

security risks in connected ML-enabled medical systems and

highlighting the need for a new framework.

Our work opens up three interesting future work directions

– (1) Automated risk identification: Automating the risk iden-

tification process at scale would benefit device manufacturers

as well as the security research community. This would require

identifying relevant documents on the web and parsing a huge

volume of unstructured documents, while at the same time

being able to relate various ML concepts. The automated tool

also needs to be interfaced with the state-of-the-art vulnerabil-

ity databases and repositories of peer-reviewed research works

so that it can even identify emerging threats in AI and medical

devices; , (2) Building personalized spatial and temporal risk

profiles per patient: Our case study shows that attacks on

ML-enabled medical systems cause more damage to certain

patients than others. Moreover, a patient is not equally vulner-

able at all points of time. An interesting research problem is

to study patients’ data in more detail to develop customized

spatial and temporal risk profiles for every patient; and, (3)
Efficient risk mitigation techniques: This involves designing

attack-resilient ML models, determining accountable entity

and enforcing accountability in risk mitigation, accounting for

the costs and deployment scenario.

We have made our code and datasets publicly available at:

https://gm-repo.github.io/Security-MEDAI/
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