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Abstract—The adoption of machine-learning-enabled systems
in the healthcare domain is on the rise. While the use of ML in
healthcare has several benefits, it also expands the threat surface
of medical systems. We show that the use of ML in medical
systems, particularly connected systems that involve interfacing
the ML engine with multiple peripheral devices, has security
risks that might cause life-threatening damage to a patient’s
health in case of adversarial interventions. These new risks
arise due to security vulnerabilities in the peripheral devices
and communication channels. We present a case study where
we demonstrate an attack on an ML-enabled blood glucose
monitoring system by introducing adversarial data points during
inference. We show that an adversary can achieve this by
exploiting a known vulnerability in the Bluetooth communication
channel connecting the glucose meter with the ML-enabled app.
We further show that state-of-the-art risk assessment techniques
are not adequate for identifying and assessing these new risks.
Our study highlights the need for novel risk analysis methods for
analyzing the security of Al-enabled connected health devices.

Index Terms—Machine learning, FDA, medical system security,
risk analysis, multi-vendor systems.

[. INTRODUCTION

The use of Artificial Intelligence (AI), especially Machine
Learning (ML) techniques, is becoming increasingly popular
in the medical field. As of October 2022, the U.S. Food and
Drug Administration (FDA) has approved 521 ML-enabled de-
vices across 15 different medical disciplines (e.g., Cardiology,
Ophthalmology, and Gastroenterology) [1]. However, the use
of ML has expanded the threat surface of medical systems [2]—
[16] making them more vulnerable to cyberattacks.

ML-enabled medical devices are used for performing crit-
ical activities such as remote patient monitoring, controlling
surgical equipment, automatic drug administration, and pre-
liminary/advanced disease diagnosis — tasks that require high
accuracy and reliability [1]. If an adversary compromises such
a device, it can force the ML engine to make incorrect predic-
tions or decisions, which can have catastrophic consequences,
such as wrong treatment leading to health complications.

An adversary can force an ML engine to generate incorrect
predictions or decisions by injecting carefully crafted mali-
cious data points either during training or inference. Preventing
such attacks in ML-enabled medical devices is challenging.
These ML-enabled devices are typically interconnected with
other peripheral sensor devices that collect physiological data
of patients, which are then processed by the ML engine.
Therefore, it is not enough to secure the ML-enabled device,

since adversaries can exploit vulnerabilities in the peripheral
devices to inject malicious data points in the ML engine.

To protect the end-to-end system, one must systematically
identify and assess the security risks ! of the overall system
due to vulnerabilities in peripheral devices. To the best of our
knowledge, there is no systematic technique for identifying and
assessing the end-to-end risks of ML-enabled medical systems.

Identification of risks in ML-enabled connected medical
systems has two challenges. First, at deployment, the ML-
enabled device is interfaced with several other peripheral
devices, each of which may be manufactured by a different
company. For instance, a user of the ML-enabled blood
glucose monitoring app Dreamed Advisor Pro [17], needs to
install the app on a smartphone, and then connect to it a
smartwatch, a glucose meter, and an insulin pump, all of which
would be manufactured by different companies, and may have
their own security vulnerabilities. Second, each app user may
use peripheral devices from different sets of manufacturers,
leading to diverse vulnerabilities among different users of
the same app. For instance, one user of the app might use
a vulnerable smartphone, while another user might use a
vulnerable glucose meter.

Furthermore, it is also challenging to assess the severity of
these risks. This is because the severity of a risk posed by
a vulnerable peripheral device might differ when assessed in
the context of the individual device (in-silo assessment) versus
when assessed in the context of the entire system. For instance,
consider a user who connects the Dreamed Advisor Pro app
to a glucose meter with a write-access vulnerability, and a
smartphone with a read-access vulnerability. When assessed
separately, the glucose meter would have a higher perceived
risk than the smartphone. However, for an adversary who
wants to inject adversarial glucose meter readings into the
app, being able to read data from the smartphone (e.g., meal
timings, latest insulin dose, carbohydrates taken) might be
useful for crafting malicious data points that adhere to physi-
ological constraints. Adhering to the physiological constraints
is important for the adversary to get the malicious data points
accepted as valid inputs by the ML engine. Therefore, we
need to holistically consider the risks from the interplay of
vulnerabilities in peripheral devices.

IWe define risk as the probability of a security vulnerability getting
exploited, and its potential impact or loss.
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In this paper, we perform a systematic analysis to highlight
the security risks of end-to-end ML-enabled connected med-
ical systems. Our analysis consists of three steps. First, we
conduct a systematic exploration of the FDA-approved ML-
enabled medical devices to understand the ML techniques that
they use, and the damage that can be caused to a patient if the
ML technique mispredicts their case. Second, we conduct an
extensive review to identify possible ways in which adversaries
can inject malicious data points into an ML-enabled medical
device at deployment. This involves a cross-domain analysis,
where we map known attacks on ML algorithms with known
vulnerabilities in peripheral devices that would make the
attacks practical. Finally, we perform a critical evaluation
of state-of-the-art risk assessment frameworks used by the
ML-enabled medical device manufacturing companies today.
We identify the loopholes in these risk assessment strategies
that might make manufacturers miss the risks arising due to
vulnerabilities in connected peripheral devices.
Contributions. The main contributions of this paper are:

1) We perform a systematic cross-domain security analysis
of commercial ML-enabled medical devices approved by
the FDA (Section III), to highlight the security risks of
connected health devices.

We then perform a case study on a realistic ML-enabled
blood glucose management system (BGMS) (Section IV)
to demonstrate an attack on the system where the adversary
compromises a communication link in the system.
Finally, we perform an evaluation of state-of-the-art risk
assessment techniques (Section V). We find that they are
inadequate in identifying and analyzing the severity of
security risks in ML-enabled medical systems, particularly
the risks posed to the ML engine by vulnerable peripheral
devices. We also highlight directions for improvement.

2)

3)

II. MOTIVATION AND BACKGROUND

We highlight security risks in AI/ML-enabled medical
systems due to vulnerabilities in their connected peripheral
components, using the example of the BGMS. Following this,
we demonstrate the generalizability of identified risks to any
connected ML-enabled medical system.

A. Blood Glucose Management: Background

Diabetes is a chronic health condition that hinders the
body’s natural insulin production capability, leading to ele-
vated blood glucose levels. It has detrimental effects on a
patient’s health, and sudden spikes or drops in blood glucose
can be life-threatening. Blood glucose levels can be divided
into three ranges, hypoglycemic (< 70-80 mg/dL), normal (80
mg/dl - 125 mg/dl), and hyperglycemic (> 125 mg/dL while
fasting and > 180 mg/dL two hours postprandial) [18], [19].
A consistently hyperglycemic patient (i.e., diabetic) requires
insulin injections to normalize their glucose levels. In contrast,
a hypoglycemic patient does not need insulin injections.

BGMS apps help diabetic patients monitor their blood
glucose levels and administer insulin bolus whenever the
glucose levels begin to rise at an abnormal rate. The patient
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Fig. 1: A blood glucose management system that uses ML
on the cloud, and interfaces with multiple peripheral devices.

can either manually inject the insulin, or use an automated
insulin pump connected to and controlled by the BGMS app.
It is crucial to calculate the insulin bolus dose accurately — an
overdose can lead to a sharp drop in blood glucose, while an
insufficient dose may not bring it down to the normal range.

B. An ML-enabled Blood Glucose Management System

We consider a commercial FDA-approved ML-enabled
BGMS app, the Dreamed Advisor Pro [17]. This app assists
diabetic patients in maintaining normal blood glucose levels by
periodically recommending insulin bolus doses, personalized
meal plans, and physical activities. However, since the specific
ML technique used by the Dreamed Advisor Pro app is not
publicly disclosed, we instead use a well-known, public ML-
based blood glucose prediction technique [20].

BGMS apps suggest insulin doses based on the patient’s
predicted blood glucose level in the near future (next 30 or 60
mins) [20]. This prediction is done by an ML engine running
at the back-end of the BGMS app, using recent physiological
values of the patient, such as blood glucose measurements,
insulin doses taken, meal timings, carbohydrate intake, etc.
These values are either entered manually into the app by the
patient or read from other peripheral sensor devices (e.g.,
continuous glucose monitors and smartwatches) connected
to the patient’s body. Besides sensor devices, the app can
interface with actuator devices (e.g., insulin pumps) to execute
actions suggested by the ML-enabled app. Together, the ML-
enabled app and connected peripheral devices form the BGMS.

Figure 1 shows an end-to-end schematic representation of
an ML-enabled BGMS. The glucose monitor records the blood
glucose levels of the patient at regular time intervals and
transmits them to the app over a Bluetooth communication
channel. The app uses these values for data visualization and
also sends them to a cloud server over the Internet for storage
and processing by the AI/ML engine. Finally, the predicted
insulin dose is either displayed on the app or sent to the
automated insulin pump attached to the patient’s body.
Security Risks. We consider a scenario where an adversary
intends to cause harm to a targeted user of the BGMS
app by forcing the BGMS to inject a high dose of insulin
into the user’s body when it is not supposed to, or vice
versa. We further assume that the insulin pump used by the
target is secure against known vulnerabilities [21] and that
the ML engine runs on a secure cloud server. Under such
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circumstances, the adversary can still force the ML engine
to mispredict the insulin dose by injecting carefully crafted
adversarial data points into it via the peripheral devices. For
instance, the adversary can modify the blood glucose values
sent to the ML engine [10], by exploiting vulnerabilities in the
third-party glucose monitor interfaced with the BGMS app.

The Dreamed Advisor Pro app is compatible with all non-
continuous glucose meters with regulatory approval and nine
different models of continuous glucose monitors manufac-
tured by different companies [22]. Commercial glucose meters
have been known to have firmware vulnerabilities [23] that
would allow an adversary to change the blood glucose level
readings that are sent by the glucose meter to the BGMS
app. Alternatively, an adversary could also exploit known
vulnerabilities in the Bluetooth communication protocol [21]
to launch a man-in-the-middle attack and change the blood
glucose level readings. Furthermore, these glucose monitors
are also susceptible to physical attacks that can be carried out
with electromagnetic radiation [24]. Additionally, vulnerabili-
ties in devices and communication links in the end-to-end data
processing pipeline, such as mobile devices and routers, can
be exploited to manipulate blood glucose measurements.

C. Unique Security Risks in AI/ML-enabled Medical Systems

The security risks discussed in the context of the BGMS app
apply to any ML-enabled medical device connected to multiple
peripheral devices (often manufactured by other companies)
at deployment. A security breach in any of these peripheral
devices could enable an adversary to manipulate data sent
to the ML engine, resulting in mispredictions regarding the
patient’s condition. These mispredictions pose a direct threat
to the patient’s health.

Manufacturers of ML-enabled devices face two challenges
in anticipating and assessing the aforementioned security risks
during design and manufacturing. First, these devices are built
to be compatible with a diverse range of peripheral devices
for the operational convenience of the consumers. This makes
it difficult for the manufacturer to predict what peripheral
devices the consumer would connect with the ML-enabled
device at deployment, and what vulnerabilities those devices
might have. The interplay of different vulnerabilities would
enable an adversary to perform different types of attacks on
the ML engine, which makes it challenging to analyze the risk
via the in-silo testing performed today. Second, while ML-
enabled connected systems are used in many domains such
as smart homes and industrial control systems, performing
risk analysis of medical systems is more difficult as physi-
ological data is much more complex and varies widely across
individuals [25]. Consequently, the impact of manipulating
physiological data might be different for different patients.
Manufacturers typically prioritize accuracy and failures in non-
adversarial scenarios, but a comprehensive end-to-end security
risk analysis should consider the impact of adversarial inputs
on different patients and the feasibility of attacks.

For instance, in the BGMS attack in Section II-B, the adver-
sary attempts to generate inaccurate insulin dosage predictions
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by introducing adversarial inputs to the ML engine. Most
known attacks on ML engines [2]-[16] require the adversary to
observe and manipulate at least a subset of input sensor values
to alter the predicted insulin dose. The adversary’s efficiency in
crafting adversarial inputs increases with greater observability
into different sensor values. In Section II-B, we assumed
the adversary could only manipulate glucose level readings
through vulnerabilities in the glucose meter or the Bluetooth
link. However, if the adversary can observe commands sent to
the insulin pump, they could craft adversarial glucose meter
readings to yield a higher success rate with equal or fewer
perturbations. While unauthorized read access to an individual
insulin pump poses a low-level risk, in the context of the entire
BGMS, it becomes a high-level risk.

III. ATTACKS ON ML-BASED SYSTEMS AND THEIR
RELEVANCE IN THE HEALTHCARE DOMAIN

Motivated by the BGMS example in Section II, we system-
atically investigate a subset of FDA-approved AI/ML-enabled
medical devices/software [1] to identify potential security risks
at deployment. We perform this investigation in two steps.
First, we identify the ML techniques used by each of the
devices/software systems. We survey existing work in the
domain of AI/ML security to understand what types of attacks
may target these techniques (Section III-A). Next, for each
of these devices/software, we examine the practicality of the
attack scenarios identified in the previous step ( SIII-B).
Selecting medical systems for our investigation. As of
December 2022, the U.S. FDA has approved 521 ML-enabled
medical devices 2 across 15 different physiological panels.
However, there is no automated risk analysis technique today,
and analyzing all the 521 devices manually would be arduous
and time-consuming. Therefore, we selected a subset of these
devices for manual analysis. We used the following selection
criteria to ensure a fair representation of the set of devices.

1) We select at least one device from each physiological panel
to study if risks due to vulnerabilities in peripheral devices
are common across all medical domains;

Within the same physiological panel, we select devices that
perform different types of diagnosis or treatments, to ensure
coverage across different medical activities.

We select an equal number of two types of ML-enabled
devices - software that can be installed on the consumer’s
pre-existing device, and software that is sold bundled with
proprietary hardware. This would help us understand if one
of these is more secure than the other;

We select devices that are used in hospitals and clinics
under medical supervision, as well as devices that are
used by patients at home without medical supervision. This
would help us understand if the environment in which the
medical device is deployed affects its security.

2)

3)

4)

Additionally, to ensure that sufficient information is avail-
able for each selected device, e.g., the ML algorithm used,

2 As per the terminology used by the FDA website, the term ‘device’ refers
to both physical devices as well as software solutions.
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the type of data processed, etc, we select 20 different devices
across 13 of the 15 physiological panels, as shown in Table I.
Unfortunately, due to insufficient information, we could not
select any device from the Dental and Hematology panels.

A. Known Attacks on ML Algorithms Used by FDA-Approved
Medical Devices

Table I presents our study of the ML algorithms used
by the devices we selected for our evaluation. Our goal is
to understand if there are known attacks against these ML
algorithms that can be used by adversaries to make these ML
engines mispredict the outcome. We also examine the types of
tasks for which these ML algorithms are used, and the worst-
case consequences of misprediction by the ML engine.
Survey Process. We performed the following steps to identify
known attacks on the ML algorithms used by the devices.
Step 1. Identifying the ML algorithm and input features used
by the device: We analyze device information available in the
Premarket Notification summaries submitted by manufacturers
to the FDA during the approval process. These summaries are
available on the FDA website [1], and contain crucial details
such as the ML algorithm and the type of data processed.
However, for some devices, like GI Genius, the summaries
lack specific information about the ML algorithm. In such
cases, we explore the manufacturer’s website and, if even
that is inadequate, we estimate the ML algorithm based on
the device’s task and processed inputs. We look for known
ML algorithms that perform the same task using similar input
features. For example, for GI Genius, we found a relevant
paper [26] that performs gastrointestinal lesion detection (the
same task performed by GI Genius) with a high accuracy using
Convolutional Neural Networks (CNN).

Step 2. Ildentifying known attacks on the ML algorithm: We
search for known attacks in the literature that target the ML
algorithms identified in Step 1. We focus on attacks described
in research papers published in both conferences and journals.
The discovery of such attacks does not definitively establish
the vulnerability of the ML engine in the device under con-
sideration. Rather, it identifies potential risks, emphasizing the
need for systematic risk identification and mitigation.

Step 3. Estimating worst-case impact of mispredictions: We
estimate the worst-case impact of mispredictions by these
devices from our understanding of the device functionality and
description provided by the manufacturer, either in the device
summary or on their website. We deem the misprediction to
be potentially fatal if the device is used for the treatment or
diagnosis of a patient in medical emergencies, and a medical
expert would not have enough time to assess the correctness
of the device output. For instance, the NuVasive Pulse System
is used by surgeons during spinal surgeries for continuously
monitoring the neurophysiological status of the patient, and a
misprediction by the device would be potentially fatal.
Insights. We obtained the following insights from the infor-
mation that we gathered using the aforementioned process.

1) We observed that the majority of the ML algorithms are
vulnerable to inference-time attacks, with a few suscep-
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tible to training-time attacks. Both of these pose major
health risks for patients. However, executing inference-
time attacks is comparatively easier for adversaries as
they demand fewer adversarial inputs than training-time
attacks. Most of the devices prone to training-time attacks
are deployed in hospitals or diagnostic centers, where a
shared set of peripheral devices is used to collect data from
multiple patients. If adversaries successfully compromise
these peripheral devices over an extended period, they can
manipulate sufficient patient data to poison the training
dataset 3. This would affect a large number of patients.
Examples include the Deep Learning Image Recognition
Software, and the Oxehealth Vital Signs monitor.

Even when the devices are operated by medical practi-
tioners, detecting a misprediction might be challenging for
two reasons. First, physiological data exhibit significant
variance even among patients with the same medical con-
dition, owing to diverse underlying health conditions and
demographic factors [27]. Second, many devices are used
for infrequently performed diagnoses/medical procedures,
or are used only for medical emergencies. Under such
circumstances, the lack of the particular patient’s historical
physiological information makes it challenging for the
medical practitioner to detect an anomaly. Examples are
Cardiologs ECG Analysis Platform, GI Genius, ABMD
Software, and NuVasive Pulse System.

Some devices (e.g., the One Drop Blood Glucose Mon-
itoring System), are used by patients at home without
continuous medical supervision. Detecting a misprediction
from such devices would be much more challenging than
devices that are directly operated by medical practitioners.
Many of these devices are used in clinics and hospitals
for disease diagnosis, treatment, and patient monitoring.
However, a few are used by patients at home. Hospitals and
clinics would typically have a higher security budget than
individual patients at home, and hence have better security.
Consequently, designing a one-size-fits-all security solution
for ML-enabled medical systems is challenging. Therefore,
while designing security solutions for medical devices, the
implementation effort and cost should be considered.
Some of the ML-enabled softwares are sold bundled with
proprietary hardware (i.e., software-in-medical-device),
while some can be installed by the user on any general-
purpose computer (i.e., software-as-medical-device). The
latter have a broader threat surface due to diverse combi-
nations of hardware, software, and Operating System (OS)
vulnerabilities across various general-purpose computer
models, making the assessment of risk severity challenging.

2)

3)

4)

5)

B. Analyzing the Functionality and Vulnerability Landscape
of FDA-approved (AI/ML)-Enabled Medical Devices

We investigate how an adversary can exploit the vulnera-
bilities identified in §III-A. Table I shows that all the identi-
fied ML attacks involve manipulating inputs during training

3Many systems undergo periodic re-training on recent physiological data.
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SL Device Physiological Device IhLe CF Pt L) 'Potentlal
No Name [1] Panel Functionalit User ML algo data attacks impact of
. ¥ used processed (Attack type) misprediction
CardioLogs Cardiac . Wrong
1 | ECG Analysis Cardiovascular arrhythmia rggzctlilgirs Deep Nfl;;l}\ll)\letwork Image Chen et al. [2] @ treatment
Platform® detector P i (Fatal)
Camera-based Hybrid
2 Oxehealth Cardi 1 monitor for heart,| Medical convolutional Long Vid Albattah Wrong
Vital Signs' ardiovascutar pulse, and practitioners | short term memory 1aeo et al. [3] @ treatment
respiratory rate networks (LSTM)
. Gastroenterology/ iIcli::gIOl.’;.l Medical Convolutional . Wrong
3 GI Geniust . . neural Video Amin et al. [28] @ . ?
Urology lesion practitioners . diagnosis
. networks (CNN)
detection
Body fluid
analyzer for .
4 sozot  |Castroenterology/l T, o g Medical CNN * Numeric | Byra et al. 29] D Wrong
Urology . . | practitioners diagnosis
protein-calorie
malnutrition
WellDoc Diabetes M(?Qical Darknet-53 Wrong
5 + General hospital practitioners, Numeric Lal et al. [4] @ . °
BlueStar management patients CNN diagnosis
Insulin dose Medical Multi-layer Wrong
6 | d-Nav System! | General hospital cedictor practitioners,| perception (MLP) | Numeric | Zhou et al. [30] ® treatment
p patients and LSTM (Fatal)
. : Wron,
MBT-CA o Meiseles wrong
7 Ci Microbiology Spectometry Mepl}cal DNN * Numeric diagnosis
System practitioners et al. [5] @ (Fatal)
8 | KIDScore D3 8bstetr1cs & Em?ero image Me'd.lcal Decentrahze{i Image |Nguyen et al. [31] ® Wron% ‘
ynaecology assessment practitioners | federated learning diagnosis
NuVasive . Neurological Medical " Mistake in
? Pulse System? Orthopedic monitoring | practitioners CNN Image Joel et al. 6] @ surgery (Fatal)
. Inception-v3
10 |[ABMD Software’ Radiology d léone Mgd}Cﬁl and Image |Bortsova et al. [7] ® 'Wron‘g'v
ensitometer | practitioners Densenet-121 * diagnosis
Deep Learning i . .
11 Image Radiology Xray Medical ) ResNet-18 Image Menon et al. [8] @ d.W“’“‘?’_
Reconstruction’ reconstruction | practitioners Paul et al. [32] @ 1agnosis
. T s . Medical CatBoost j . Wrong
12 Air Next Anesthesiology Spirometer practitioners ResNet-50 * Image | Vargas et al. [9] @ diagnosis
One Drop W
Blood Glucose Clinical Diabetes . . Levy-Loboda rong
13 s . Patients MLP Numeric treatment
Monitoring Chemistry management et al. [10] @ (Fatal)
System?
OTIS 2.1 and
THIA Optical General and Human tissue Medical Support V ector ® Wrong
14 Coherence Plastic Surger imagin ractitioners Machines Image Ma et al. [16] diagnosis
Tomography > sery &g P ’ (SVM) S
System?
Diagnosis of
D L . Graph Neural
EarliPoint
15 artt Ol? Neurology _Pedmtr]c Me_d}cal Network Image | Chen et al. [11] ® Wrong
System Autism Spectrum | practitioners (GNN) diagnosis
Disorder
L . CNN + Wrong
16 | BrainScope TBI Neurology zgzler;slgf;;ty rg/cltei(tjilgzlers Recurrent neural | Numeric | Yu et al. [12] @ treatment
p networks (RNN) (Fatal)
Diabetic . Wrong
17| IDxDR V231 | Ophthalmic | Retinopathy | Medical Federated Image |Nielsen et al. [13] D|  diagnosis
. practitioners learning .
Detection (loss of vision)
. . Storage,
Ir1§ Intelhgep ! . management and | Medical Mangaokar .Wrong.
18 | Retinal Imaging Ophthalmic . : . DNN Image ©) diagnosis
System! dlsplgy of retinal | practitioners et al. [14] (loss of vision)
ys images
. Cancer Medical . Wron,
i g
19 | Paige Prostate Pathology diagnosis practitioners CNN Numeric | Hu et al. [15] @ treatment (Fatal)
Tissue of Origin Malignant Tumor| Medical Wrong
20 Test Kit? Pathology diagnosis practitioners SVM Image Ma et al. [16] ® treatment (Fatal)

TABLE I: A study of different FDA-Approved ML-enabled medical devices and their security vulnerabilities

t: Software as medical device, {: Software in medical device, *: Best-guessed ML algorithm,

@: Training-time attack, @: Inference-time attack, ®: Privacy attack
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or inference. For each ML-enabled device, we search for
compatible peripheral devices and communication channels
that would allow adversaries to introduce malicious data into
the ML engine. We also assess the adequacy (or the lack
thereof) of manufacturers’ risk assessments, as mentioned in
their Premarket Notifications, to determine their effectiveness
in preventing such security risks. Table II presents this study.
Survey Process. To understand the vulnerability landscape
of each device, we performed the following two steps.

Step 1. Identifying peripheral devices and communication
media compatible with the ML-enabled device: We identify
compatible peripheral sensor devices, communication media,
and operating system from its Premarket Notification sum-
mary [1] and information on the manufacturer’s website. One
or more of these can be a potential point of attack.

Step 2. Identifying vulnerable peripherals that can be exploited
for attacking the ML engine: For each potential attack point,
we look for known attacks and vulnerabilities by searching
research papers and vulnerability databases [33], [34]. We
list at least one vulnerability that would allow an adversary
to eavesdrop or inject malicious data into the ML engine,
enabling them to execute the attacks identified in §III-A. This
list of vulnerabilities is not comprehensive. We highlight at
least one vulnerability to motivate the risk analysis technique.

Insights. We summarize the insights from this study below.
1) We found known vulnerabilities in the peripheral devices
compatible with several ML-enabled devices. While most
vulnerabilities affect only a small group of devices, a few
vulnerabilities affect all devices of a certain type. For
instance, the Conexus telemetry protocol vulnerability [35]
only affects the ECG monitors from Medtronic. However,
another attack [36] affects all infrared-sensitive cameras.
Some vulnerabilities (e.g., [35] for the Cardiologs ECG
Analysis Platform, and [36] for Oxehealth Vital Signs)
require the adversary to execute the attack locally as they
have to be within the Bluetooth [35] communication range,
or within the range of infrared light emission [36]. Such
attacks can be executed by insiders or by breaching the
physical security of the hospital or the patient’s home.
Many of the vulnerabilities can be exploited remotely (e.g.,
[37] for Oxehealth and [38] for the IDx-DR) over the
Internet. Since connectivity to the Internet is mandatory
for these devices, preventing remote attacks is challenging.
In some cases, identifying the attack path is challenging.
For example, the IDx-DR software relies on inputs from
the Topcon NW200 Fundus camera. Although we found no
known vulnerability in the camera, it comes bundled with a
computer running Windows 7 by default, which has known
vulnerabilities [38]. These Windows 7 vulnerabilities could
enable an adversary to inject malicious inputs into the ML
engine. While updates for Windows 7 may address such
vulnerabilities, medical devices typically do not receive
routine security updates. In a specific case [38], the vendor
even decided not to release a patch, assuming most users
would upgrade to Windows 10.

2)

3)

4)
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5) We did not find any known vulnerability in the peripheral
devices for some systems (e.g., SOZO, WellDoc Blues-
tar, and Air Next). However, many of these systems use
Bluetooth, Internet communications, and web services.
Adversaries can exploit vulnerabilities [21] in these com-
munication channels for injecting adversarial inputs.

We found that many of the ML-enabled device manufac-
turers (e.g., the NuVasive Pulse System) do not perform
any security evaluation, and only focus on accuracy and
safe operating conditions (e.g., protecting the devices from
electrical hazards). Even the manufacturers who consider
security, rarely consider the peripheral devices. For in-
stance, the developers of the IDx-DR software evaluate the
software for various security risks, but not its peripheral
device, the Topcon NW200 Fundus Camera. However, se-
curity evaluation of the software alone is insufficient. This
is because an adversary might execute the inference-time
attack [13] shown in Table I by exploiting the vulnerability
in the camera [38] to install malware that manipulates the
images that are sent to the input of the ML engine.

6)

IV. CASE STUDY

We present a case study to demonstrate the security risks in
the ML-enabled BGMS described in Section II-B. We show a
practical attack on the BGMS in which the attacker exploits
the vulnerabilities in connected devices to negatively affect the
predictions of the ML-enabled decision-making component .

A. Attack Description

Adversarial Goal. The attacker aims to endanger a targeted
patient’s life by causing the ML model to misdiagnose the
patient’s condition, thereby leading to an incorrect insulin
dose suggestion. While minor prediction errors are benign,
a substantial error could have life-threatening consequences.
In this case study, we consider an attacker aiming to make
the model predict a high blood glucose level (hyperglycemia)
when the patient actually has a low (hypoglycemia) or normal
blood glucose level. If the attacker succeeds, the BGMS would
erroneously recommend more insulin, causing the patient’s
glucose level to drop significantly below normal. The impli-
cations range from incorrect diagnosis (e.g., in the WellDoc
BlueStar system) to incorrect treatment (e.g., in d-Nav and One
Drop BGMS systems), potentially leading to fatal outcomes.
Adversarial Capabilities. We assume the attacker has reason-
able and realistic capabilities, wherein they can only tamper
with the CGM measurements. Manipulating the manually
entered finger-based glucose readings, carbohydrate intake,
and bolus dose is beyond the attacker’s capabilities. However,
the attacker can compromise the smartphone [48] to gain read-
only access to these values once they have been gathered from
external sensors or after being manually entered by the patients
in the mobile app. The attacker is oblivious to the structure and
parameters of the underlying ML model (black box attack),

4No human subjects were used in our experiments. Instead, we rely on
a publicly available anonymized dataset and a publicly available prediction
model that resembles the original model in terms of functionality and features.
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Known attacks and Connected to

<k LU Risk assessment guideline followed vulnerabilities in compatible the Internet
No. Name q q
peripheral sensor devices or Bluetooth ?
1 CardioLogs ECG Analysis  |Inadequate information - Acknowledges the need for L @ Cellular network,
Platform® cybersecurity of cloud-based software Portable ECG Monitors - { [35]} Bluetooth
. Guidance for the Content of Premarket Submissions for |Infra-red sensitive cameras
2 Oxehealth Vital SlgnsT Management of Cybersecurity in Medical Devices [39] - [36] ® { 371} ® Intranet / Internet
Moderate level of concern as defined in the
3 GI Geniust “Guidance for the Content of Premarket Submissions Endoscope cameras - { [40]} ® Intranet / Internet
for Software Contained in Medical Devices.” [39]
. . . Bluetooth,
4 NerZe None No third-party peripheral device used Intranet/Internet
5 WellDoc BlueStar! Guidance for the Content of Premarke} Submissions for [No Vulner§bility identified in peripheral | Bluetooth, ]
Management of Cybersecurity in Medical Devices [39] |sensor devices Cloud Service API
Guidance for the Content of Premarket Submissions for |[No vulnerability identified in peripheral .
6 d-Nav System' Management of Cybersecurity in Medical Devices [39] |[sensor devices g perp Cloud Service API
7 MBT-CA System® None No third-party peripheral device used No
8 KIDScore D3 None No vulnergbility identified in peripheral Intranet / Internet
sensor devices
] Infra-red sensitive cameras
9 NuVasive Pulse System® None ® ® Internet
- [36] \&, { [37]}
10 ABMD Software! None No vu]nergblllty identified in peripheral Unknown
sensor devices
Deep Learnin
1 Image RP:econstruc%ionJr None X-ray machines - { [41]} ® Unknown
. . . . Bluetooth,
12 Air Next? None No third-party peripheral device used Internet
13 Onid]z;?ﬁ)r?égogygleﬁose None No third-party peripheral device used Bll;lgrog?’
OTIS 2.1 and THiA Optical ANSI AAMI ISO 14971:2007/(R)2010 [42], S . . . )
14 Coherence Tomography IS)yslem IEC 62304:2006/A1:2015 [43] No third-party peripheral device used Unknown
. Webcams installed on personal
15 EarliPoint System® None Internet
computers - [44]
16 BrainScope TBI* None No third-party peripheral devices used Internet
Considers security concerns related to data This device uses the Topcon NW200
confidentiality, integrity, availability, denial of service Fundus camera, which comes packaged
17 IDx-DR v2.37 attacks and malware. Risks related to the failure of various|With a PC running Windows 7 OS. The Internet
software components and their potential impact on Windows 7 OS has known
patient reports were also adequately addressed [45]. vulnerabilities. - { [38]} ®
Iris Intelligent Retinal Imaging Retinal cameras such as Topcon
18 3 + Ensures HIPAA [46] compliance NW200 - Same vulnerable peripherals Internet
ystem as in the case of IDx-DR v2.3
Considers software security as per “Content of Premarket
Submissions for Management of Cybersecurity in
19 Paige Prostate Medical Devices: Guidance for Industry and Food and Medical scanners - { [47]} @ Internet
Drug Administration Staff". Also encrypts the
communication between the device and servers.
20 Tissue of Origin Test Kitf None No third-party peripheral device used Internet

TABLE II: Known vulnerabilities in peripheral devices and communication media compatible with FDA-approved

ML-enabled medical devices.

and does not have access to the training set. The attacker can
attack the Bluetooth communication stack via known exploits
[21] to intercept and manipulate the CGM measurements. This
is because the FDA-approved diabetes management devices
(e.g., One Drop and WellDoc BlueStar) use Bluetooth com-
munication to transmit the collected measurements.

Attack Strategy. The attacker aims to misdiagnose the patient
as hyperglycemic by pushing predicted blood glucose levels
toward the hyperglycemic range. This involves modifying
hypoglycemic or normal blood glucose levels to values exceed-
ing 125 mg/dL (hyperglycemic while fasting) or 180 mg/dL
(hyperglycemic postprandial). To achieve this, the attacker
manipulates CGM readings for a specific duration, causing

: Locally exploitable only,
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®): Remotely exploitable

the BGMS app to misdiagnose the patient’s blood glucose
level. Determining the minimum time duration and extent of
manipulation requires careful consideration.

B. Experimental Setup

We first present the ML model used in the BGMS setup, fol-
lowed by a description of the dataset used for our experiments.
Next, we describe the Universal Robustness Evaluation Toolkit
(URET) [49], used for generating the adversarial inputs.
Targeted ML model. Since the specific ML algorithm used
in the Dreamed Advisor Pro app (described in Section II-B) is
confidential, we approximated it using a time-series prediction
model developed by Rubin-Falcone et al. [20]. This model
uses a bidirectional long short-term memory (LSTM) recurrent

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:44:58 UTC from IEEE Xplore. Restrictions apply.



neural network (RNN) architecture, and uses root mean square
error (RMSE) and mean absolute error (MAE) to evaluate the
prediction accuracy. Intuitively, both RMSE and MAE indicate
the difference between predicted and actual glucose levels. The
higher the difference, the worse the prediction. Further, our
chosen target model uses a neural network similar to the FDA-
approved d-Nav System [50] in Tables I and II (i.e., LSTM).

Rubine-Falcone et al. [20] built two models - (i) a person-
alized model for each patient trained on the patient’s data, and
(ii) an aggregate model trained on the data of all patients. Their
average RMSEs are 18.2 and 31.7, and average MAEs are 12.8
and 23.6 on the 30 and 60-minute horizons, respectively.
Dataset. To demonstrate the impact of adversarial inputs
on the predictions of the targeted ML model, we use the
2020 OhioT1DM dataset [51]. This was used by the target
model developers [20] for evaluating its accuracy. The dataset
comprises physiological measurements of six Type-1 diabetic
patients. The main features are CGM blood glucose mea-
surements, finger-based measurements, basal insulin, bolus
dose, carbohydrate intake, heart rate, sleeping patterns and
acceleration, besides other physiological, and self-reported
life-event features. The dataset spans eight weeks and consists
of ~10000 samples for training, and 2500 for testing, both
recorded at approximately 5-minute intervals per patient.
Universal Robustness Evaluation Toolkit (URET). In Table
I, we found three diabetes management devices (5,6, and
13) that are vulnerable to inference-time attacks. Hence, we
decided to launch an evasion attack against our target model,
which manipulates data points at inference time by introducing
slight perturbations to their original values to evade detection
by the ML model and cause misclassification [52]. We use
URET [49], a general-purpose framework for generating ad-
versarial inputs for evasion attacks. Unlike most evasion attack
techniques that focus on the image classification domain [32],
[53]-[55], URET can generate adversarial inputs regardless of
the data types or task domain.

URET takes in a benign input instance and a set of pre-
defined input transformations and attempts to find a sequence
of transformations (e.g., increment or replace glucose level)
resulting in an adversarial input that is both semantically and
functionally correct. The URET framework is compatible with
a wide variety of data types and domains and allows the user
to specify which feature values to manipulate, and bounds and
constraints on the feature values. As URET allows specifying
constraints on the feature values, we can ensure the generated
adversarial samples abide by victims’ physiological limits.

Since we assume the attacker can only modify CGM values,
we specify the CGM feature indices in URET’s configuration
file as the only modifiable feature. To ensure that adversarial
CGM values respect the physiological levels, we constrain
them to be between 125 and 499 mg/dL for fasting levels, since
a hyperglycemic glucose level in a fasting state should exceed
125 mg/dL, and between 180 and 499 mg/dL for postprandial
levels, since a hyperglycemic glucose level in a postprandial
state should exceed 180 mg/dL (499 mg/dL is the highest
reported glucose level in the OhioT1DM dataset). Further,
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Fig. 2: RMSE of the benign model, the model attacked with
fasting hyperglycemic blood glucose levels, and with
postprandial hyperglycemic blood glucose levels.

since there are missing physiological measurements at specific
timestamps in the dataset, especially CGM measurements, we
specify the relationship between CGM glucose and a feature
called “missing” as a dependency. This ensures the ML model
does not interpret the missing CGM values as zero values.
In addition, the attacker can observe other feature values
(e.g., bolus dose), which in turn play a role in adversarial
data generation, since the attacker needs read access to those
features to use the loss function to rank the adversarial input.

C. Results

While the target models use RMSE and MAE to evaluate
the prediction accuracy, we consider the RMSE results only,
as the two metrics show similar behaviors. Figure 2 shows the
performance of personalized patient models and the aggregate
model trained on all patients’ data (‘All patients’) before and
after the URET attacks while fasting and postprandial. The
maximum RMSE value for the benign models is around 21
mg/dL, while the average RMSE across all 7 benign models
is around 18.3 mg/dL. The figure also shows the RMSE values
after the attack for both fasting (>125 mg/dL) and postprandial
(>180 mg/dL) hyperglycemic glucose levels. Thus, the RMSE
values increase regardless of the used threshold since glucose
values are driven further away from the actual values.

Moreover, postprandial RMSE values are consistently
higher than fasting RMSE values due to the use of a higher
threshold for the lower bound of the adversarial input (i.e.,
180 mg/dL instead of 125 mg/dL). The hike in RMSE values
between the benign and the attacked models in both cases
shows a significant difference between the actual and predicted
blood glucose levels, implying diminished accuracy of the ML
model. This would cause a potentially fatal insulin overdose.

Figures 3 and 4 show the percentage of instances that are
misdiagnosed as hyperglycemic while actually being normal
and hypoglycemic, respectively, for both the fasting and post-
prandial attack scenarios. A higher misclassification percent-
age demonstrates more susceptibility to the respective attack
scenario, while a lower percentage implies more difficulty
in crafting successful attacks. We make three observations
from the two figures. First, URET achieves considerably
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Fig. 3: Percentage of originally normal glucose instances that
are misclassified as hyperglycemic.

high attack success rates, reaching up to 100% in some
cases. URET achieves comparable attack success rates in both
normal-to-hyperglycemic and hypoglycemic-to-hyperglycemic
scenarios on average, demonstrating the robustness of the
attack generated by URET across different initial glucose
levels. Second, the attack success rate is consistently higher
during fasting compared to postprandial states, indicating that
attacking a fasting patient is relatively easier for the adversary.
This is because a smaller amount of perturbation is performed
when increasing the CGM glucose from the original value
to fasting hyperglycemic levels as opposed to postprandial
hyperglycemic levels. This confirms that URET is more suc-
cessful when the perturbation margin is smaller. Third, patients
exhibit varying resilience to the URET attacks. For example,
Figure 3 shows that the success rate of misdiagnosing a patient
from normal to hyperglycemic is the lowest for patient 2
(67.4% ftasting, and 44.2% postprandial) and is the highest for
patient 5 (100.0% fasting, and 97.9% postprandial) suggesting
that it is more challenging for URET to attack patient 2
compared to patient 5. Similarly, Figure 4 shows that the attack
success rate of misdiagnosing a patient from hypoglycemic to
hyperglycemic is the lowest with patient 3 (72.4% fasting, and
28.0% postprandial) and is the highest with patient 5 (100.0%
fasting, and 100.0% postprandial) suggesting that patient 5 is
more vulnerable compared to patient 3. We hypothesize that
this is because the rich history of some patients leads to a
more robust prediction model that is more difficult to attack.
Summary. We demonstrated an attack where an attacker
compromises the Bluetooth communication between the CGM
peripheral device and the BGMS mobile app, enabling them
to manipulate the measured glucose levels. The experimental
results show that the attacker can cause the ML model to
misdiagnose the patient’s medical condition as hyperglycemic.
In the best-case, this leads to a wrong diagnosis, and in the
worst-case , it has fatal consequences for the patient.

D. Discussion: Attack Practicality and Broader Impact

The assumptions made in the proposed attack are practical
and align with previously demonstrated attacks [21]. While no
real attack on a BGMS has been reported, security breaches in
other medical devices, such as pacemakers, have been reported
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instances that are misclassified as hyperglycemic.

in the recent past [56]. The severity of these breaches is evident
from the widespread recall of multiple pacemaker models and
the substantial financial loss incurred by the manufacturer [57].
These incidents also raised concerns about targeted attacks on
high-profile individuals using such devices. For example, in
2013, former US Vice President Dick Cheney revealed that
he had the wireless capabilities of his implanted pacemaker
deactivated due to fears that an adversary could cause a cardiac
arrest by sending a malicious signal to his pacemaker [58].

V. RISK ASSESSMENT TECHNIQUES EVALUATION

We assess the state-of-the-art risk assessment techniques,
investigating both their strengths and limitations. We discuss
the benefits of these methods in risk analysis processes while
pointing out their shortcomings using the BGMS attack exam-
ple. Finally, we highlight the need for a new risk assessment
framework for ML-enabled connected medical systems.

A. A Survey of Existing Techniques

We consider five broad categories of risk assessment meth-
ods. However, in the context of ML-enabled connected med-
ical devices, these techniques often lack in three key aspects:
(1) impact on affected users (more users affected, higher risk),
(2) ease of vulnerability detection (easier detection, lower
risk), and (3) ease of post-exploitation mitigation, including
available remediation levels and responsible entities. Table III
presents the extent to which existing risk assessment methods
incorporate these factors. We describe the methods below.
DREAD. DREAD [59] is a risk rating system built by Mi-
crosoft, primarily for evaluating risks posed to conventional
web applications based on their damage potential, repro-
ducibility, exploitability, affected users, and discoverability.
However, the DREAD system cannot be used for ML-enabled
connected medical systems. This is because DREAD does not
detail how security risks in individual connected components
may pose a threat to the overall system.

STRIDE. STRIDE [59] by Microsoft is another qualitative
model designed to identify and categorize threats in web ap-
plications. It addresses six attack types: Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, and
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Method l],)()atg}ﬁ%ﬁ Exploitability A[i}fseé:rtgd Detectability M]%gfgeat(i)gn
DREAD v v v v X
STRIDE v X X X X
FMEA v X X v X
CVSS v v X X X
Other Works v/ v/ X X X

[61], [62]

TABLE III: Comparison of factors considered in existing
risk analysis frameworks

Elevation of Privilege, and offers corresponding countermea-
sures. However, using STRIDE for an end-to-end risk assess-
ment in ML-based medical systems is challenging because it
does not account for adversaries exploiting peripheral devices.
FMEA. Failure Modes and Effects Analysis (FMEA) [60]
is a foundational analytical technique to detect and mitigate
potential risks. This method involves a detailed examination of
system components to identify potential causes of failure and
their impact on system stability. However, it fails to provide
end-to-end risk assessment for connected ML-based medical
systems because it primarily focuses on individual component
failures, overlooking broader systemic implications and how
vulnerabilities propagate throughout the entire pipeline.
CVSS. The Common Vulnerability Scoring System
(CVSS) [63] is an open risk scoring framework designed
by FIRST.Org, Inc. to capture the severity level of software
vulnerabilities. CVSS comprises three metric groups: Base,
Temporal, and Environmental, capturing different vulnerability
characteristics. While it is not a risk assessment model [63],
it helps prioritize threats across system components through
context-specific choices made by the risk management team.
However, it lacks consistency in prioritizing metrics, notably
in ML-enabled medical devices where availability loss could
be life-threatening, unlike in web applications where it might
lead to user dissatisfaction or financial repercussions [64].
FDA-approved Security Standards for Medical Devices.
The FDA has established a cybersecurity guideline to help
the industry identify cybersecurity risks in medical devices
[39]. However, their primary focus is on risks associated with
communication between medical devices and IT networks.
Consequently, addressing vulnerabilities in AI/ML-enabled
medical devices that do not interface with an IT network
remains a challenge.

Academic Research Efforts and Industry. There has
been a rich literature on performing risk assessment within
the healthcare sector [61], [62]. While companies typically
conduct preliminary risk evaluations for their ML models, they
do not analyze the security risks associated with deploying the
models in a connected healthcare environment [65]. Rather,
their concern is ensuring the ML model is trained on an
unbiased dataset, and evaluated using a diverse dataset. Simi-
larly, while there are companies that claim to offer penetration
testing services for medical devices, their testing is conducted
in-silo rather than on the end-to-end connected system.

106

No mention of security risk assessment

Inadequate security

Lo AAMI TIRS7, Principles for risk

Management in medical device security

IEC 80001-1:2020, Risk management for
medical devices in IT network

[
%
=
B FDA guidance for Premarket Submissions for
management of cybersecurity in medical devices

= TT%
Proprietary mechanisms

Fig. 5: Security risk assessment techniques by manufacturers
of FDA-approved ML-enabled medical systems based on [39]

B. Limitations of Existing Techniques

We use the ML-enabled BGMS as an example to highlight
the shortcomings of existing techniques in adequately consid-
ering all the factors required for an ideal risk analysis.
DREAD. DREAD fails to assess the actual potential damage
if a peripheral device like the glucose meter or smartphone
is compromised. In such cases, the attacker can not only
access the data but also to manipulate it, thereby compromising
both the integrity and confidentiality of the system. However,
DREAD cannot differentiate between them accurately.
STRIDE. An attacker can manipulate data in several ways
before it is fed into the ML engine. Nevertheless, according
to the STRIDE model, all these methods are categorized under
Tampering, without any additional insights into how these
manipulations were performed.

FMEA. FMEA could potentially assess the risks associated
with individual peripheral devices in the BGMS, like glucose
meters or smartphones. However, FMEA does not offer in-
sights into the risks associated with the propagation of this
vulnerability within the system or its potential impact on the
ML model’s predictions.

CVSS. When a vulnerability impacts the availability of the
BGMS, the CVSS assigns the same risk level as it would
for a similar incident in other domains like web applications.
This approach is not appropriate, as an availability issue in the
BGMS could potentially lead to irreversible harm to patients.
FDA-approved Security Standards for Medical Devices.
Encountering physical attacks like electromagnetic interfer-
ence [24] is independent of the connectivity between the
glucose meter and the IT network. Hence, the FDA-approved
security standards also fall short of an ideal risk analysis.

C. Need for a New Risk Assessment Framework

Our investigation into the types of security risk assessment
performed by manufacturers of ML-enabled medical devices
is summarized in Figure 5.We find that over 80% of these
manufacturers either do not provide information about the
assessment in their documentation, or employ inadequate
assessment methods. Another 5% use proprietary mechanisms,
making it challenging to assess the adequacy of their approach.
The remaining 12% utilize existing risk assessment techniques,
which, as discussed, are insufficient for risk assessment of ML-
enabled connected medical systems. Therefore, developing an
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efficient risk assessment technique for ML-enabled medical
devices remains an open challenge.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

We conducted a detailed study of security risks associated
with modern AI/ML-enabled medical devices, stemming from
vulnerabilities in connected peripheral devices. We conducted
a systematic security analysis of FDA-approved commercial
Al/ML-enabled devices. Our analyses reveal vulnerabilities of
these devices to existing adversarial attacks, raising concerns
about the suitability of using such safety-critical devices on
real-world patients. To validate our analysis, we executed
a realistic adversarial attack on an ML-enabled blood glu-
cose monitoring system, identifying security risks in the
process. Additionally, we studied state-of-the-art risk assess-
ment frameworks, underscoring their limitations in identifying
security risks in connected ML-enabled medical systems and
highlighting the need for a new framework.

Our work opens up three interesting future work directions
— (1) Automated risk identification: Automating the risk iden-
tification process at scale would benefit device manufacturers
as well as the security research community. This would require
identifying relevant documents on the web and parsing a huge
volume of unstructured documents, while at the same time
being able to relate various ML concepts. The automated tool
also needs to be interfaced with the state-of-the-art vulnerabil-
ity databases and repositories of peer-reviewed research works
so that it can even identify emerging threats in Al and medical
devices; , (2) Building personalized spatial and temporal risk
profiles per patient: Our case study shows that attacks on
ML-enabled medical systems cause more damage to certain
patients than others. Moreover, a patient is not equally vulner-
able at all points of time. An interesting research problem is
to study patients’ data in more detail to develop customized
spatial and temporal risk profiles for every patient; and, (3)
Efficient risk mitigation techniques: This involves designing
attack-resilient ML models, determining accountable entity
and enforcing accountability in risk mitigation, accounting for
the costs and deployment scenario.

We have made our code and datasets publicly available at:
https://gm-repo.github.io/Security-MEDAI/
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