
Snoopy: A Webpage Fingerprinting Framework
With Finite Query Model for Mass-Surveillance

Gargi Mitra , Prasanna Karthik Vairam, Sandip Saha,

Nitin Chandrachoodan ,Member, IEEE, and V. Kamakoti

Abstract—Internet users are vulnerable to privacy attacks despite the use of encryption. Webpage fingerprinting, an attack that

analyzes encrypted traffic, can identify the webpages visited by a user. The key challenges in performing mass-scale webpage

fingerprinting arise from (i) the sheer number of combinations of user behavior and preferences to account for, and; (ii) the bound on the

number of website queries imposed by the defense mechanisms (e.g., DDoS defense) deployed at the website. These constraints

preclude the use of conventional data-intensive ML-based techniques. In this work, we propose Snoopy, a first-of-its-kind framework,

that performs webpage fingerprinting for a large number of users visiting a website. Snoopy caters to the generalization requirements of

mass-surveillance while complying with a bound on the number of website accesses (finite query model) for traffic sample collection.

We show that Snoopy achieves � 90% accuracy when evaluated on most websites, across various browsing contexts. A simple

ensemble of Snoopy and an ML-based technique achieves � 97% accuracy while adhering to the finite query model, in cases when

Snoopy alone does not perform well.

Index Terms—Encrypted traffic analysis, mass surveillance, website privacy, webpage fingerprinting

Ç

1 INTRODUCTION

LEAKAGE of private information is one of the biggest con-
cerns for Internet users today. Recent reports [1], [2] sug-

gest that sensitive information that could cause imminent
personal harm to Internet users, including banking pass-
words, salary details, health records, location information,
and CCTV footage, have been leaked in the dark web. While
privacy loss for personal information is easily perceivable, it
is not so obvious for other types of information. For exam-
ple, the Cambridge Analytica scandal showed that the polit-
ical leanings of an ordinary individual may not be worthy
to the attackers, but the political alignment of a larger
demography can help them predict the outcome of an elec-
tion [3]. Such incidents show that some user information
that are seemingly unimportant to an individual might
inadvertently turn sensitive when collected on a mass scale.

Mass Surveillance and its Consequences. One of the largest
sources of mass-scale information about personal preferen-
ces of Internet users are their web browsing activities [4],
[5]. Information such as the identity of websites visited by
users from a demography could be useful to an attacker, for

instance, to gauge the popularity of websites in the region.
However, more fine-grained information such as the identity
of webpages (a website can have many webpages) visited by the
users on a targeted website could be much more useful to
the attackers. For instance, a surge in the number of visitors
to the “fixed-deposit” page of a bank website shortly after
the announcement of a new policy is critical to the bank.
This information, if leaked, could help competing banks
estimate its growth and also design counter-marketing strat-
egies. Another example is when the adversary identifies the
most popular webpage of the website for placing malware.
Such active attacks (phishing attacks [6], drive-by-down-
load attacks [7] and denial-of-service attacks [8]) cause
financial loss either to the hosting organization or its
consumers or both. In this paper, we focus on designing a
mass-surveillance method that can potentially reveal such fine-
grained sensitive information from a large number of Inter-
net users based on their web browsing activities.

Straightforward methods to identify the webpages vis-
ited by the users of a website include compromising the
end-user devices and the websites’ servers (e.g., extracting
decryption key, installing fake certificates). However, these
methods are highly intrusive and are easily detectable, mak-
ing them unsuitable for long-term surveillance. Note that
the importance of information grows manifold when col-
lected over a longer period of time [9], [10], [11], [12], since
it ensures sufficient coverage of users and also reflects
changing trends in their behavior. Encrypted Traffic Analy-
sis (ETA) [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25] (specifically, webpage fingerprinting) is the
most promising non-intrusive method to collect such infor-
mation for long periods of time by merely capturing the
encrypted traffic exchanged between the websites’ server
and the end-users. The webpages are identified by

� Gargi Mitra, Sandip Saha, Nitin Chandrachoodan, and V. Kamakoti are
with the Indian Institute of Technology Madras, Chennai, Tamil Nadu
600036, India. E-mail: {gargim, CS20S044, kama}@cse.iitm.ac.in, nitin@ee.
iitm.ac.in.

� Prasanna Karthik Vairam is with the National University of Singapore,
Singapore 119077. E-mail: prasanna@comp.nus.edu.sg.

Manuscript received 23 March 2022; revised 5 November 2022; accepted 9
November 2022. Date of publication 16 November 2022; date of current ver-
sion 1 September 2023.
(Corresponding author: Gargi Mitra.)
This article has supplementary downloadable material available at https://doi.
org/10.1109/TDSC.2022.3222462, provided by the authors.
Digital Object Identifier no. 10.1109/TDSC.2022.3222462

3734 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

1545-5971 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8011-4590
https://orcid.org/0000-0001-8011-4590
https://orcid.org/0000-0001-8011-4590
https://orcid.org/0000-0001-8011-4590
https://orcid.org/0000-0001-8011-4590
https://orcid.org/0000-0002-9258-7317
https://orcid.org/0000-0002-9258-7317
https://orcid.org/0000-0002-9258-7317
https://orcid.org/0000-0002-9258-7317
https://orcid.org/0000-0002-9258-7317
https://orcid.org/0000-0003-2332-8538
https://orcid.org/0000-0003-2332-8538
https://orcid.org/0000-0003-2332-8538
https://orcid.org/0000-0003-2332-8538
https://orcid.org/0000-0003-2332-8538
mailto:gargim@cse.iitm.ac.in
mailto:CS20S044@cse.iitm.ac.in
mailto:kama@cse.iitm.ac.in
mailto:nitin@ee.iitm.ac.in
mailto:nitin@ee.iitm.ac.in
mailto:prasanna@comp.nus.edu.sg
https://doi.org/10.1109/TDSC.2022.3222462
https://doi.org/10.1109/TDSC.2022.3222462

formulating signatures that can identify them uniquely
when accessed by users through encrypted channels. While
several existing webpage fingerprinting attacks [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25] target
particular users, our goal is to perform mass-surveillance by
observing the activities of a large number of users visiting a
particular website. Fig. 1 shows a high-level objective of this
paper. The main challenge with mass-surveillance is
accounting for a diverse set of user behavior (e.g., number
of tabs used), user preferences (e.g., OS/Browser used), and
network conditions. We collectively refer to these factors as
the browsing context in this paper.

Existing techniques [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25] for webpage fingerprinting are
not suitable for mass-scale traffic analysis even with just
HTTPS (i.e., without Tor/VPN). Practical mass-surveillance
requires a generalized model that can identify webpages irre-
spective of the browsing context of a user. Building a general-
ized model that accounts for all possible browsing contexts
is challenging. The primary hindrance in the generalization
of existing works is the massive number of data points
required, i.e., the number of traffic samples required per
webpage to account for all possible browsing contexts. For
instance, building a generalized model for 3 operating sys-
tems and 3 browsers will require 9 times the traffic samples
as compared to one-OS-one-browser scenario [24]. More-
over, for achieving the accuracy promised by DL/ML algo-
rithms, collecting adequate number of traffic samples per
scenario is also crucial. Existing ML-based [24] and DL-
based techniques [26], [27] that aim at generalization of fin-
gerprinting models have demonstrated the significance of a
large number of data points in learning traffic features and
building webpage fingerprints accurately. Additionally,
any change in the website also requires fresh collection of
traffic samples and re-training the model [28]. Therefore,
generalizing existing techniques requires assuming a query
model that allows the adversary innumerable accesses to
the website within a short span of time. However, in prac-
tice, we observed that the DDoS/DoS mitigation schemes at
the websites detect and block IP addresses that make such
attempts. Furthermore, IP addresses that cause anomalies
in website analytics, including those involved in attempts to
sample webpages repeatedly, are identified and blocked.
Note that, an adversary can neither keep collecting traffic
samples from a website over a long period of time to bypass
these anomaly detection systems. This is because, the

structure and contents of websites change significantly and
frequently. For instance, the American financial services
website B_5 (refer to Table 3) used in our experiments
changed (added/deleted/modified) 65 of its webpages over
a period of only 7 days. This problem has also been pointed
out in a prior research work [28].

To work around the problem of collecting a massive
number of traffic samples, prior works have assumed
knowledge about one or more of the following, thereby
compromising generalization:

1) User interests – Existing works [13], [14], [15], [16],
[23] assume that the user is only interested in a sub-
set of webpages. In mass-surveillance, however, the
adversary needs to account for a wide variety of user
interests;

2) User behavior – Most of the existing works [15], [17],
[20] assume restricted user behavior such as single-
tab browsing [15], [24], [25] and traversing only a
limited number of webpages per session [23]. A few
works account for the use of more than one tab [17],
[20], but they were not successful beyond 2 browser
tabs. However, such assumptions are not valid in
practical scenarios. Accounting for multi-tab brows-
ing requires webpage-sequence based data collec-
tion, which in turn increases the traffic samples
exponentially. Further, during multi-tab browsing, a
user might even load two webpages in parallel.
Existing studies [29], [30] have discussed the parallel
multi-tab browsing behavior of Internet users in fur-
ther details;

3) User preference – Existing works [16], [18], [25]
assume prior knowledge about the OS and the
browser used, as well as knowledge about browser
caching (on/off) and cookie values. However, mass-
surveillance necessitates accounting for various com-
binations of OS and browser configurations; and,

4) Network conditions – Existing works build prediction
models for a particular network condition, which
cannot be generalized to other network conditions.
However, mass surveillance requires the prediction
model to work across geographical locations and ser-
vice providers.

Naı̈ve attempts at generalization without the addition of
adequate number of data points for covering additional sce-
narios result in poor prediction accuracy. For instance, we
witnessed a drastic drop in prediction accuracy (e.g., from
96% to 76% in case of Wfin [21]) of existing ML-based works
when we broadened the user interest from a small number
of webpages1 to a large number (refer to Fig. 7 in Sec-
tion 6.4.3). Further, we also noticed a drop in prediction
accuracy (e.g., from 78% to 58% in case of ML_OPS [14])
when the number of training samples is reduced from 10 to
3 per webpage (refer to Fig. 6 in Section 6.4.2). Likewise,
when we tried to generalize existing works in terms of user
preference (caching on or off), we found a drop in accuracy
(as shown in Table 5 in Section 6.4.4) when a model built for
one scenario (caching on) was used to predict webpages
accessed from a different scenario (caching off). Therefore,

Fig. 1. Snoopy, the proposed framework for webpage identification
attack on a mass-scale.

1. We conducted these experiments on a popular bank website.

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3735

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

availability of a limited number of training samples imposes
restrictions on the use of existing DL/ML based techniques.

In our work, we propose Snoopy, a practical webpage
fingerprinting framework, that meets the generalization
requirements of mass-surveillance, while assuming a finite
query model. With limited number of traffic samples, account-
ing for the numerous scenarios encountered in mass-surveil-
lance is challenging. Snoopy uses domain knowledge about
the transport and application protocols to collect traffic sam-
ples in a focusedmanner. For instance, Snoopy uses encrypted
web resource size, a simple feature used in ETA, that remains
largely unaffected by changes in network conditions, elimi-
nating the need to cover this scenario altogether. For general-
izing across other scenarios Snoopy relies on static analysis
of web object sizes, HTML code and headers to estimate the
expected fingerprints. In this paper, we analyze the capabil-
ity of a simple model such as ours in terms of generalization
in cases where there are practical constraints for using ML/
DL techniques. We show that Snoopy was able to achieve
more than 90% accuracy for most of the websites we consid-
ered, when tested on traffic samples from a diverse set of
browsing contexts. For the few websites where Snoopy
achieved comparatively lower accuracy (�80%), we show
that it is possible to improve the accuracy to as high as 97%
by using an ensemble of Snoopy and anML-based technique,
that complies with the constraints of a finite query model. To
the best of our knowledge, ours is the first work to attempt
webpage fingerprinting attack for mass surveillance. We
intend to release our code and artefacts2 to interested
researchers.

The rest of the paper is organized as follows. In Section 2
we present the literature related to our work and motivate
the need for Snoopy. Next, we state our adversarial capabili-
ties and assumptions, followed by a high level overview of
Snoopy in Section 3. Then we describe the design choices
made for Snoopy in Section 4. This is followed by a detailed
description of Snoopy in Section 5. Thereafter, we describe
the implementation and evaluation strategies of Snoopy
and present a detailed analysis of the experimental results
in Section 6. We discuss the consequences of mass-surveil-
lance and suggest some possible countermeasures to the
proposed technique in Section 7. Finally, we conclude the
paper in Section 8.

2 RELATED WORK

With growing security concerns, traffic on the Internet is
encrypted. Thus, our work is related to the literature on
Encrypted Traffic Analysis (ETA) techniques, which can be
broadly classified into (1) Website identification attacks –
these works [33], [34], [35], [36], [37], [38], [39] aim to infer
coarse-grained web browsing information, i.e., the identity
of websites browsed over Tor/VPN; and, (2) Webpage iden-
tification attacks – these works [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [31], [32] aim to infer fine-
grained web browsing information of users from HTTPS
traffic, i.e., the identity of webpages browsed within a web-
site. The techniques used for webpage identification are

very different from those used for website identification. On
one hand, website identification require features (e.g.,
Round trip time) that vary across websites but remain con-
sistent for webpages within a website. In contrast, webpage
identification attacks [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [31], [32] require features (e.g.,
HTML size) that vary across the webpages within a website,
which can help distinguish between them. Blurring the
lines between the two classes, some website identification
attacks [34], [35], [36], [37], [38], [39] internally use webpage
fingerprinting techniques to distinguish between the home-
pages of thousands of websites. We note that such techni-
ques do not inherit the same set of challenges that a
webpage identification attack faces (e.g., restrictions on
number of accesses to the website). In this work, we focus
on webpage identification attacks on a given website, sub-
ject to constraints on the number of webpage accesses.

In this section, we revisit the literature on webpage
fingerprinting and assess their suitability for mass-scale
HTTPS traffic analysis. Webpage fingerprinting on mass-
scale traffic requires a generalized classifier which could
account for diversity in client behavior and network condi-
tions. Diversity in client behavior, for example, in terms of
browser/OS/device used, number of tabs open, and the
sequence in which webpages are accessed, results in differ-
ent fingerprints for the same webpage [22]. Diversity in net-
work conditions in terms of jitter, bandwidth and packet
drop rates also affects the webpage fingerprints [35].
Accounting for these diversities across so many factors is
challenging due to practical restrictions on the number of
website accesses. In this context, Table 1 classifies the prior
works in terms of their generalization capabilities. The earli-
est webpage fingerprinting techniques [31], [32] could
successfully generalize webpage fingerprints for simple
contemporary websites that did not use caching, cookies,
and used static webpages with limited number of resources.
Such works used basic features such as size of client request
packets and sequences of encrypted object sizes, coupled
with elementary statistical methods.

The prevalence of web caching on the Internet prompted
subsequent research works [13], [14], [15] to start the use of
webpage-sequence fingerprinting to account for variations
in traffic patterns based on the previously accessed web-
page(s). However, the applicability of webpage-sequence
fingerprinting techniques is restricted only to targeted
attacks and are not suitable for mass surveillance due to the
following reasons – (1) It necessitates an enormous number
of website accesses as compared to individual webpage
based fingerprinting techniques, even for medium-sized
websites; and, (2) these works used features such as
resource ordering [13] and traffic burst patterns [14], [15]
for fingerprinting webpage sequences. Such features are not
consistent across varying network conditions and user
behavior (e.g., number of browser tabs open), and hence,
require an estimate of the network speed and browsing
behavior of the victim. Such fingerprinting techniques were
useful in the context of surveillance on a small set of tar-
geted users, since the attackers had knowledge about the
targeted victim’s browsing behavior and network condi-
tions. However, assuming interests of website users, their
browsing behavior (sequential or single-tab browsing) and

2. Link to repository: https://gmit91@bitbucket.org/gmit91/snoopy.
git

3736 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

https://gmit91@bitbucket.org/gmit91/snoopy.git
https://gmit91@bitbucket.org/gmit91/snoopy.git

their network conditions is impractical for mass-surveil-
lance in realistic scenarios [28].

The use of cookies by the next generation websites fur-
ther complicated the process of webpage fingerprinting,
even for targeted attacks. Tracking cookies embedded
inside web resources and session cookies included in appli-
cation layer headers result in resource size variations. To
account for these variations, subsequent research works [16],
[18] either used complex techniques (combination of cluster-
ing algorithms, Gaussian distribution, Hidden Markov
Model and Viterbi algorithm) complemented by huge data-
sets [16] or simplified their assumptions about user behav-
ior [18]. The former technique [16] is too restrictive about
user interests since they consider only a small set of web-
pages to make data collection practical. On the other hand,
the latter one [18] assumes impractical user behavior such
as single tab browsingwithout caching. However, these tech-
niques are restricted only to targeted attacks, and are not suit-
able for mass surveillance due to the following reasons – (1)
The goal of mass-surveillance is to understand the interests of
the users of a website. Therefore, restrictive assumptions
about user interests are unreasonable in the context of mass-
surveillance, and; (2) Restrictive assumptions regarding the
browsing behavior (for e.g., the number of tabs used, OS/
Browser used, and the browser configuration) of a diverse set
of website users are also unreasonable. Therefore, these tech-
niques cannot be used for analysis of encrypted traffic on a
mass scale.

Recent works [17], [19], [20], [22], [23], [24], [25], [34], [35]
on webpage fingerprinting have recognized the importance
of practical mass surveillance. Most of these works acknowl-
edge the necessity of accounting for diversity in user inter-
ests [19], [23], [25], user behavior (particularly, a wide variety
of user interests and multi-tab browsing) [17], [20], [34], OS/
browser settings [22] and network conditions [35] while per-
forming encrypted traffic analysis on mass-scale web traffic.
However, it is to be noted that each of these works can only
generalize for at most one of these factors. This is because, for
most of these works [22], [34], [35], generalizing for even one
of these factors using the features and/or the techniques

presented in these works requires collecting a massive
amount of traffic samples, coupled with a heavyweight ML
algorithm. This would result in a large number of website
queries (i.e., the number of website accesses done by the
adversary), as well as a high bootstrap time every time the
website contents change or a new OS or browser or firmware
becomes popular. For instance, one of these works [22]
account for diversity in browser, OS and device used by the
client at the cost of an immensely high bootstrap time.

As summarized in Table 1, existing ETA techniques have
complied with a finite query model at the cost of restrictive
assumptions about the interests and browsing behavior of
the users, and vice-versa, and are suitable for mass surveil-
lance. We propose Snoopy, an ETA technique that is
designed with the goal of meeting the generalization
requirements and complies with a finite query model, both
of which are essential for mass-surveillance.

3 THE SNOOPY FRAMEWORK

In this section, we present Snoopy, our proposed adversarial
framework for mass-surveillance through webpage finger-
printing We first describe the capabilities of the adversary,
then define the scope of our work, and finally provide a
high level overview of Snoopy.

3.1 Adversary Capabilities

Our adversary is a compromised network device on the client-
server path that can (1) access unencrypted header fields of
both control and data packets; and, (2) observe the traffic char-
acteristics, such as the size of encryptedpackets. Such an adver-
sary model is not only realistic but also common today. In the
real world, this translates to a rogue Internet Service Provider
(ISP) or amalicious entitywho compromises an ISP router.

3.2 Assumptions and Scope

We make the following assumptions about the context in
which Snoopy is to be employed.

� We do not consider websites that host dynamic or
highly personalized content for each user, for e.g.,

TABLE 1
Compliance of Webpage Fingerprinting Techniques With the Requirements for Mass-Surveillance

Existing works Mass-surveillance Requirements

Generalization Requirements Compliance with a finite
query modelCaching Cookies Network

conditions
User

interests
Multi-tab
browsing

Cheng and Avnur [31], Sun et al. [32] ✗ ✗ ✓ ✓ ✗ ✓
Cai et al. [15], G. Danezis [13], Chapman
and Evans [14],
Gong et al. [33]

✓ ✗ ✗ ✗ ✗ ✓

Miller et al. [16], Hayes and Danezis [18] ✓ ✓ ✗ ✗ ✗ ✓
Gu et al. [17], Zhuo et al. [34] ✓ ✓ ✗ ✓ ✓ ✗
Xu et al. [20] ✗ ✗ ✗ ✗ ✓ ✗
Alan and Kaur [22] ✗ ✓ ✓ ✗ ✗ ✓
Ghiette et al. [23] ✓ ✓ ✗ ✓ ✗ ✗
Panchenko et al. [19], Sirinam et al. [35] ✓ ✓ ✓ ✓ ✗ ✗
Wang et al. [25] ✗ ✓ ✗ ✓ ✗ ✓
Shen et al. [24] ✗ ✗ ✗ ✓ ✗ ✓

Snoopy ✓ ✓ ✓ ✓ ✓ ✓

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3737

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

social media websites and web search engines, as
targets for our attack;

� The adversary does not have the capability to
decrypt the traffic of real website users. Most real-
world adversaries cannot decrypt web traffic except
maybe those involving government agencies or
authorized middle-boxes [40]; and,

� Snoopy must compromise a network device that has
access to all the encrypted Application layer packets
(referred to as traffic trace) exchanged between the
client and the server for the entire duration of a
browsing session. For instance, our framework can-
not be used when route flapping (dynamic change of
route due to, for instance, unreliable connections)
occurs on the server-client path.

� The scope of our work does not include inferring the
intent and interest of the website visitors from the
webpages inferred by Snoopy. Rather, we believe
that existing works [41] on behavioral analysis of
website users can be used by an adversary for this
purpose.

3.3 High Level Overview

We now provide a high level overview of Snoopy – our
mass-surveillance framework. Snoopy comprises the Snoopy
Database and two functional modules, namely, Webpage Pro-
filing Module and Webpage Prediction Module. The Snoopy
Database is meant to store information (i.e., webpage finger-
prints and additional website metadata) required for carry-
ing out the predictions, and the two functional modules are
used by the adversary for profiling webpages and predict-
ing the identities of webpages accessed by the users. Fig. 2
shows the different components of Snoopy and how an
adversary interacts with them.

To populate the Snoopy Database, the adversary first
triggers the Webpage Profiling Module of Snoopy with the
Website ID (IP address or homepage URL) of the target
website, as shown in Step 1 of Fig. 2. The goal of this module
is to gather information about the website that will be useful
to the Webpage Prediction Module. The input to this module
is the website identifier (IP address or homepage URL) and
the set of features to be used forwebpage fingerprinting. First,
the finite query engine in thismodule performs a focused traf-
fic sample collection from the target website. Subsequently,
this traffic is decrypted and both the encrypted and decrypted

versions of the traffic samples are passed on to the static anal-
ysis engine. While Snoopy does not require the decryption
keys of users during the attack, it still needs to decrypt the
traffic samples that it generates on its own during the profil-
ing stage. This is necessary to identify the plaintext resources
(e.g., HTML, javascript, images) of each webpage from their
encrypted counterparts. The final output of theWebpage Pro-
filingmodule includes information pertaining to (1) the struc-
ture of the website; (2) resource download sequences for each
webpage in the website; (3) signature of these web resources;
and, (4) other relevantwebsite metadata, such as cache-ability
and cookie information of theweb resources.

Once the database has been populated, Snoopy notifies
the adversary that it is ready to be used for prediction, as
shown in Step 2 of Fig. 2. When the adversary wants to pre-
dict the webpages accessed by a user from their encrypted
traffic trace, it triggers the Webpage Prediction Module of
Snoopy. This module takes an encrypted traffic trace T of a
user as input, as shown in Step 3 of Fig. 2, and predicts the
webpages that are accessed in T using the information
stored in the Snoopy database. Snoopy performs this predic-
tion in two steps. First, it extracts the feature values from the
input trace T and performs a lookup on the Snoopy Data-
base to retrieve the sequence of candidate web resources
present in T . Next, Snoopy uses this sequence and the web-
site metadata to predict the final set of webpages, which it
returns to the adversary (Step 4 of Fig. 2).

The most unique and crucial feature of Snoopy is its abil-
ity to comply with a finite query model, while retaining its
generalization capability at the same time. Achieving this
balance between generalization and a finite number of
queries is extremely challenging. Snoopy attempts to solve
this problem using the following:

1) Predictable features: It uses a feature that exhibits neg-
ligible or predictable variation across browsing con-
texts. The predictability of the feature values allows
Snoopy to fingerprint webpages in different browsing
contexts even with a finite number of traffic samples,
complying with a finite query model. The feature used
in Snoopy and the justification behind this choice are
discussed in further details in Section 4; and,

2) Focuseddata collection and feature value estimation:
For collecting traffic samples from the targeted web-
site, Snoopy uses a focused data collection method to
account for certain browsing contexts, which has been
discussed in details in Section 5.1. Snoopy estimates
the variations in feature values in different brows-
ing contexts using static analysis of HTTP headers
and payload. At the time of prediction, Snoopy
uses these estimated feature values (from the
Snoopy Database) based on the user’s browsing
context. The feature value estimation and predic-
tion techniques used by Snoopy are detailed in
Section 5.2.

4 SNOOPY DESIGN: PREDICTABILITY OF

FINGERPRINTS

Snoopy needs an encrypted traffic feature that either exhib-
its no variation or predictable variation across different

Fig. 2. The components of Snoopy.

3738 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

browsing contexts, in order to minimize the number of traf-
fic samples required during webpage profiling. In other
words, the traffic features used for webpage profiling need
to be stable across different browsing contexts. For this, we
evaluated different classes of traffic features (e.g., timing
side-channels and traffic burst patterns) that are widely
used in prior ML-based works [16], [33] for targeted attacks
and assessed their stability. It is known and also shown in
our evaluations presented in the Appendix, available
online, that such traffic features have poor stability and are
therefore not predictable. For instance, the traffic burst pat-
tern corresponding to a webpage download changes with
variations in network conditions and the number of parallel
browser tabs used by a user.

Snoopy uses sequence of encrypted web resource sizes as the fin-
gerprint of a webpage. The size of an encrypted resource is
computed as the sum of TLS segment sizes of all packets carry-
ing the resource. Since each user might have a different brows-
ing context, Snoopy first focuses on understanding the effect of
various browsing contexts on the fingerprint. While some of
the factors of the browsing context affect the encrypted
resource size, some others affect the sequence in which the
resources are downloaded. An analysis of these factors
helps Snoopy statically estimate the variations caused by
each of these factors, thereby eliminating the need for
collecting traffic samples for all possible browsing con-
texts. We now explain how the size of encrypted resour-
ces and their download sequence change based on the
browsing context of a user:

1) Operating system (OS) – The choice of OS affects the
TLS segment size of packets in multiple ways. First,
the TLS segment size of a web resource depends on
the TLS implementation on the corresponding OS.
Different OS’es start with the same TLS record but
they break them into segments of different sizes.
Although one might not expect this to affect the TLS
segment size, we noticed minor differences when the
sum of TLS segment sizes is calculated. A deeper
analysis revealed that the number and size of seg-
ments affects the metadata associated with every
TLS segment in a number of ways, which are, to our
advantage, predictable. First, there are some TLS
headers added to every TLS segment. Therefore, if a
record is broken into several small TLS segments,
the total number of TLS header bytes for all the seg-
ments would be greater than the total number of TLS
header bytes added in case the record was broken
into fewer larger segments. Second, a variable field
on the HTTP header, namely, the user agent string
that carries the name of the OS also affects the TLS
record size.

2) Browser – The browser name indirectly affects the
TLS segment size since it is also a part of the User
Agent string. As different browser names have dif-
ferent lengths, they affect the length of the User
Agent string, which in turn, results in variation in
the TLS record sizes.

3) Browsing sequence – The sequence in which a user
browses the webpages affects both the TLS record
sizes and the download sequence of the web

resources, particularly when caching and cookies are
allowed (enabled in most browsers by default).
� Caching: When a user visits a webpage contain-

ing a resource that was previously downloaded,
the resource may not get downloaded if resource
caching is enabled. This results in variation in
resource download sequence. For instance, if a
user visits webpage WX (composed of resources
r1 and r2), followed by webpage WY (composed
of resources r1 and r3), the overall resource
download sequence would be r1–r2–r3. On the
other hand, if caching was disabled, it would
result in the following sequence: r1–r2–r1–r3.

� Cookies: When a user allows a website to use
cookies, the server sends a session cookie in the
HTTP header along with the first resource deliv-
ered during the browsing session. Addition of
the session cookie increases the TLS record size
of the first resource downloaded during a brows-
ing session. Therefore, a resource would have a
larger TLS record size if it gets downloaded at
the beginning of a browsing session, as com-
pared to its TLS record size when it gets down-
loaded at a later point during the browsing
session. Furthermore, another type of cookie,
called the tracking cookie, affects the payload size
of the transmitted resource. Tracking cookies
hold information about the browsing behavior of
a user such as the URL of the previously
browsed webpage(s) in the session. Since differ-
ent webpage URLs have different lengths, the
variation in TLS record size due to tracking cook-
ies depend on the webpage(s) last visited by a
user. Also, tracking cookies hold a null value for
the first resource delivered during the browsing
session. Again, this causes the TLS record size of
a resource to vary depending on the user’s
browsing sequence. For instance, if the size of a
resource r1 is s1 and the size of the session cookie
is sc, then the TLS record size of r1 would be
ðs1 þ scÞ if r1 is the first resource to be down-
loaded. On the other hand, if r1 is downloaded
after the user has visited a webpage of URL
length tc (also, the tracking cookie size) in a
browsing session, the TLS record size of r1
would be ðs1 þ tcÞ.

4) Application layer protocol – Grouping packets that
carry a resource is critical for computing the encrypted
resource size. For HTTP/1.x, packets belonging to a
resource have the same TCP ACK number, making
the process straightforward. However, it is not the
same for HTTP/2 and HTTP/3 websites due to pipe-
lining and multi-threaded server operations. With
multi-threading, packets belonging to two different
resources could get interleaved within the same TCP
stream (in HTTP/2 [42]) or QUIC stream (in HTTP/
3 [43]). To handle such complex scenarios, Snoopy
adopts the technique described in our recent work [44]
for computing encrypted resource sizes in HTTP/2
websites. For HTTP/3 websites, Snoopy drops the
QUIC connection establishment packets so that the

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3739

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

communication protocol falls back to HTTP/1.1 or
HTTP/2.

5) Parallel tabs – Browsing on concurrent tabs affects
the sequence of downloaded resources. For instance,
when a user browses two webpages, sayWX andWY

one after another on two tabs, the resources of WX

get downloaded first, followed by the resources of
WY . On the other hand, if the user opens the two
webpages in two parallel browser tabs, the resources
of WX and WY would get downloaded in an inter-
leaved fashion. In such cases, the attacker faces the
additional challenge of identifying the resources
download sequence corresponding to each webpage
from the interleaved sequence of encrypted resour-
ces, which makes the webpage prediction process
more challenging.

6) Network conditions –A congested link results in
packet transmission delays, packet drops, and block-
ing of new connections. Among these, packet drops
affect the encrypted size of resources. The dropped
packets may or may not get re-transmitted, based on
the nature of the resource. In the event of packet re-
transmissions, the re-transmitted packets can be eas-
ily assembled using state-of-the-art network protocol
dissectors so that Snoopy can still work. Therefore,
computation of the encrypted resource size by
Snoopy is not affected in this case. However, in rare
situations when a large number of dropped packets
are not re-transmitted or results in a broken con-
nection, Snoopy cannot compute or predict the
resource size correctly. Severe network congestion
may also result in route flapping. In that case, the
attacker would not be able to access the complete
network trace unless it has control over the new
route too. Such circumstances cannot be handled
by Snoopy.

Presently, Snoopy has been configured to use sequence of
encrypted web resource sizes as the feature for fingerprinting
webpages. We incorporate the aforementioned knowledge
in the design of Snoopy to make it compliant with a limited
query model while allowing it to be generalized at the same
time. However, if a feature that is more stable is discovered,
Snoopy can be configured to use that instead.

5 SNOOPY DESIGN: A DEEP DIVE

In this section, we provide a detailed description of the two
functional modules of Snoopy, viz., the Webpage Profiling
Module and the Webpage Prediction Module, and how
they use the insights from Section 4. As discussed in Sec-
tion 4, the present implementation of Snoopy uses only one
feature – sequence of encrypted resource sizes. Therefore, in
the rest of this section, we describe the functional modules
of Snoopy in the context of this feature. Table 2 contains a
summary of the notations used in the rest of this section.

5.1 Webpage Profiling Module

The input to this module is the target website identifier
WebsiteIP , the encryption functionEF , and the webpage fin-
gerprinting feature F (i.e., encrypted resource size sequence).
The output of the webpage profiling module includes the

following information (1) the structure of the website, repre-
sented by a graphG = ðW; EÞ, (2) a resource-mapRM : W�!R
that shows the relationship between webpages in W and the
web resources in R, where R ¼ fr1; r2; . . . ; rmg is the set of
web resources that constitute the targeted website ; (3) the set
of resource download sequences for all nwebpages in thewebsite,
denoted by S ¼ fS1; S2; . . . ; Sng, where Si be the sequence of
resources requested by the client when a user accesses the
webpage wi; (4) signatures of web resources, i.e., the encrypted
size of each resource; and, (5) other relevant website metadata,
such as the cache-ability and cookie information of the web
resources. We now describe the working of theWebpage Pro-
filingModule usingAlgorithm 1 in the following sections.

5.1.1 Extracting Structure of the Website

The GET_WEBSITE procedure in Step �1 in Algorithm 1
uses automated website-crawling and webpage parsing
techniques to construct G, the graph representation of the
website of interest. A vertex u in G has a directed edge to
another vertex v if u represents a webpage that has

TABLE 2
Summary of Notations Used in Section 5

Notation Meaning

WebsiteIP Website identifier (say, IP address)
EF Encryption function
F Feature used for webpage fingerprinting
G Graph representation of the target website
W Set of webpages inG:W=fw1; w2; . . . ; wng
E Set of directed edges inG. E= {ðwi; wjÞ j wj is

directly navigable from wi})
RM Webpage to resource map
R Set of web resources in the targeted website.

R= {r1; r2; . . . ; rmg
S Set of resource download sequences of all

webpages of the target website
TSamples Dataset containing encrypted traffic samples

for each ri
sigi Feature value (signature) of the resource ri
featureDB Web resource signature database.ss
ctðri; jÞ Increase in size of resource ri due to tracking

cookie when the user navigates from URL j
csðri; kÞ Increase in size of resource ri due to session

cookie carrying the Browser/OS identifier bok
ctðriÞ Set of all possible values by which size of ri

might increase due to tracking cookies (See
Section 5.1.3)

csðriÞ Set of all possible values by which size of ri
might increase due to session cookies (See
Section 5.1.3)

maxðctÞ Maximum possible increase in size of any
resource due to tracking cookies,maxðctÞ ¼
maxðctðri; jÞÞ8i; j

maxðcsÞ Maximum possible increase in size of any
resource due to session cookies,maxðcsÞ ¼
maxðcsðri; kÞÞ8i; k

cookie var Lookup-table containing cookie-induced
variations for each resource. Each entry is of
the form < ri; fctðriÞ; csðriÞg >

reverse�
FeatureDB

Reverse database made out of featureDB

T Encrypted traffic trace of a user, to be
processed by the Webpage Prediction Model

3740 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

embedded hyperlinks to help users navigate directly to the
webpage represented by v. Following this, the GET_RE-
SOURCES procedure in Step �2 parses each webpage in W
to extract its resource download sequence and compiles R,
the list of embedded web resources present in the website.
The set of resource download sequences thus retrieved is
denoted by S, and the unique set of embedded resources is
denoted by R. The MAP_RESOURCES procedure in Step �3
creates a bipartite graph RM where the vertices consist of
elements in W and R. A webpage wi is mapped to a web
resource rj when rj is embedded in wi, and this mapping is
denoted by an edge between the vertices corresponding to
wi and rj. Fig. 3 shows an example of R, W, RM, and G for
a website.

Algorithm 1. PROFILE_WEBSITE

input:WebsiteIP , EF , F
output:G, S,RM, reverseFeatureDB, cookie var
/* automated website crawling*/

1 G = GET_WEBSITE(WebsiteIP);
/ * parsing hypertext * /

2 S,R = GET_RESOURCES(W);
/ * webpage-resource relation * /

3 RM = MAP_RESOURCES(W;R);
/ * traffic sampling for webpage access * /

4 TSamples = COLLECT_SAMPLES(W, F);
/ * unique identifiers for encrypted resources * /

5 featureDB = BUILD_SIGNATURES(F ,R);
/ * look-up table for prediction * /

6 reverseFeatureDB = CONSTRUCT_DICTIONARY
(featureDB);
/ * variable cookie fields * /

7 cookie var = COMPUTE_COOKIE_VAR(G, featureDB, EF)

5.1.2 Focused Traffic Sample Collection and

Formulating Signatures of Web Resources

For building webpage fingerprints Snoopy requires a data-
set comprising traffic samples that capture how different
web resources manifest themselves on an encrypted com-
munication channel in different browsing contexts. The
COLLECT_SAMPLES procedure in Step �4 of Algorithm 1
builds this dataset. The inputs to this step are the set of web-
pages W and the fingerprinting feature F , i.e., sequence of
encrypted resource sizes. As discussed in Section 4, the val-
ues of this feature vary with different browsing contexts.
We now discuss how the COLLECT_SAMPLES procedure
handles these different scenarios.

1) Factors causing no variation in feature values. As
discussed in Section 4, the values of encrypted
resource sizes remain invariant to changes in factors

such as network conditions. Snoopy does not require
traffic samples to account for such factors that do not
affect the feature values.

2) Factors causing predictable variation in feature val-
ues. As discussed in Section 4, the variations in
encrypted resource sizes due to factors such as oper-
ating system, browser, and number of parallel tabs
used are deterministic in nature. Differences in fea-
ture values due to these factors can be estimated by
Snoopy from the domain knowledge of network and
browser protocols incorporated in its design. There-
fore, no extra traffic samples need to be collected for
accounting for such browsing contexts. The COL-
LECT_SAMPLES procedure collects traffic samples
for any one browsing context (for example, Firefox
browser). Snoopy can estimate the feature values for
the other browsing contexts (for example, Google
Chrome browser) using static analysis techniques
described in Section 5.2.

3) Factors causing website-specific variation in fea-
ture values. Snoopy requires traffic samples to esti-
mate feature values due to variations in factors that
depend on website design – the resources that can be
cached and the information that the cookie carries.
To handle this, the COLLECT_SAMPLES procedure
collects traffic samples from each webpage once
with caching on and cookies allowed and once with
caching off and cookies prohibited.

To collect the traffic samples for estimating the feature
values, the COLLECT_SAMPLES procedure spawns multi-
ple dummy clients to access the webpages, one at a time,
in separate sessions. During each webpage access, the
encrypted traffic of each client is captured by a networkmon-
itoring tool from the beginning till the end of the browsing
session. Subsequently, Snoopy processes every traffic trace
and splits them into multiple sub-traces, corresponding to
each resource ri. Note that the packets carrying the same
resource can be easily identified from an encrypted trace,
since they have the same TCP acknowledgement number.
The actual resource that is carried by the packets in a sub-
trace are found by decrypting the sub-trace with the Trans-
port Layer Security (TLS) keys used by the dummy clients.
The sub-traces and the resources they correspond to are
stored in the dataset named TSamples, where each entry is of

Fig. 3. Representation of the structure of a sample website.

TABLE 3
Characteristics of Profiled Websites

Sl
No

Website HTTP
version

TLS
version

No of
pages

Type of
webpages

1 RS 1.1 1.2 20 plain HTML
2 SBC 2.0 1.3 27 HTML scripts
3 IC_1 1.1 1.2 95 aspx
4 B_1 1.1 1.2 444 aspx
5 B_2 1.1 1.2 458 HTML scripts
6 B_3 1.1 1.2 549 aspx
7 B_4 1.1 1.2 965 HTML + JS
8 IC_2 1.1 1.2 849 HTML + JS
9 B_5 1.1 1.2 1964 plain HTML
10 PS 2.0 1.2 40,323 HTML + JS

RS - Retail Store website, SBC - Service Based Company website, IC - Insur-
ance Company website, B - Bank website, PS - Political Survey website.

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3741

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

the form {sub-trace, r}. Once the TSamples dataset is built, the
feature values of the resources can be extracted for building
the resource signatures.

5.1.3 Constructing Feature and Resource Databases

In Step �5 of Algorithm 1, the BUILD_SIGNATURES proce-
dure extracts the F value (encrypted size) of each resource
from its corresponding sub-trace, which essentially captures
the effect of the encryption function EF . For instance, if a
sub-trace contains two packets of size 50 bytes each, the
encrypted size of the corresponding resource would be 100
bytes. For every extracted sub-trace in TSamples, an entry
of the form < ri; sigi > is made in the signature database
featureDB, where sigi is the feature value of resource ri.

During prediction, an inverse mapping (i.e., EF�1) from
an observed feature value (fi) to the corresponding resource
(ri) will be required. However, constructing the inverse
mapping EF�1 is not straightforward.

Challenges in Constructing EF�1. Constructing EF�1 is
challenging because it is not possible to perform a one-to-
one mapping between encrypted resource sizes and the cor-
responding resources. This is because, as we discussed in
Section 4, the sizes of encrypted resources vary due to varia-
tions in user browsing contexts. Therefore, a single resource
might have different sizes in different browsing contexts.
Likewise, a given size value might correspond to multiple
resources in a given browsing context. Moreover, due to the
finite query model, Snoopy cannot collect traffic samples
(data points) for all possible browsing contexts.

The CONSTRUCT_DICTIONARY procedure builds a
reverse database reverseFeatureDB out of featureDB by
taking into account the many-to-many mapping between
encrypted resource sizes and resources. Each entry in
reverseFeatureDB is of the form < fi; Li > , where fi corre-
sponds to a unique FS value and Li is a list of resources that
have this value. Note that Li may include (1) multiple
resources that have the same signature and (2) multiple
instances of the same resource (each corresponding to a
dummy client access). Fig. 4 shows an instance of featureDB
and reverseFeatureDB constructed from the TSamples col-
lected corresponding to a website.

During prediction, to narrow down on the possible
resources corresponding to a sub-trace, Snoopy uses the
meta information (i.e., user-agent string, cache-ability, and

cookies) to estimate the possible encrypted resource sizes in
a given browsing context. Although the estimations for
cache-ability and user-agent string can be determined easily
(refer Section 5.1.2), for cookies, we need to collect addi-
tional traffic samples. The COMPUTE_COOKIE_VAR pro-
cedure (Step �7 of Algorithm 1) processes these traffic
samples to extract and store the meta information pertain-
ing to cookies as follows:

(1) Characterizing Tracking Cookies. Tracking cookie is an
integral part of the source code of a webpage that records
the sequence of webpages previously visited by a user. To
account for the impact of tracking cookies on the size of
encrypted resource ri, we model the parameter ctðriÞ. Note
that there is no tracking cookie during profiling time, since
each webpage is accessed in an individual session. The pos-
sible variation in feature values that arises due to embedded
tracking cookies in a user trace is calculated by parsing the
source code of the web resource (if it is in text format).
Recently developed tools such as CookieCheck [45] can also
be used for automated detection of tracking cookies in web
resources. Note that only resources that are in text format
carry tracking cookies. For each web resource that carries a
tracking cookie, the COMPUTE_COOKIE_VAR procedure
first identifies the set of URLs from which a user can navi-
gate to the resource. Subsequently, for each of these URLs,
it first computes the size of the resource with the tracking
cookie when it is not encrypted. To compute the corre-
sponding resource size when encrypted, we use linear inter-
polation of known plain-text and encrypted-text pairs.
Finally, for each resource ri, the estimated variation is
stored as

ctðriÞ ¼ f< URL1; ctðri; 1Þ > ; < URL2; ctðri; 2Þ > ;
. . . ; < URLx; ctðri; xÞ > g:

(1)

Here, ctðri; jÞð14 j4xÞ denotes the increase in encrypted
size of resource ri due to an embedded tracking cookie car-
rying the string URLj.

(2) Characterizing Session Cookies. Session cookies are
transmitted when a page is accessed for the first time in a
session. During profiling, the resources will always have
the session cookie. The parameter csðriÞ accounts for the dis-
crepancy in the encrypted size of resource ri due to the pos-
sible absence of session cookie in the real user’s trace. This
happens when the resource is not the first resource to be
accessed by the real user. The value of csðriÞ can be esti-
mated by considering all the information carried in the
header field (e.g., user ID, user agent, max-age of the cookie,
its expiry date, etc.) and their possible values. Most of these
information are of fixed length, except for the user agent
field that contains the browser and OS name. Much like
tracking cookies, the COMPUTE_COOKIE_VAR stores this
information for each resource ri as

csðriÞ ¼ f< bo1; csðri; 1Þ > ; < bo2; csðri; 2Þ > ;
. . . ; < box; csðri; xÞ > g: (2)

Here csðri; jÞð14j4xÞ denotes the increase in encrypted
size of resource ri due to the session cookie carrying
browser-OS identifier string boj.

Fig. 4. Constructing featureDB and reverseFeatureDB from TSamples
and FS.

3742 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

The cookie induced variations thus estimated, are stored
in a lookup-table cookie var, where each entry is of the form
< ri; fctðriÞ; csðriÞg > . For resources that do not contain
tracking cookies, ctðriÞ contains NULL value.

5.2 Webpage Prediction Module

TheWebpage Prediction Module of Snoopy takes an encrypted
traffic trace T as input, as shown in Step 3 of Fig. 2, and pre-
dicts the webpages that are accessed in T using the informa-
tion stored in the Snoopy database. Snoopy first predicts the
web resources accessed and subsequently uses them for
predicting the webpages accessed in T .

5.2.1 Predicting Web Resource Sequence

For predicting the resources in the input trace T , Snoopy
first splits T into sub-traces, each corresponding to an
encrypted resource. From each sub-trace, the feature values
are extracted and stored, in the order they appear in T , into
an array FValues, where each element contains the feature
value (encrypted resource size) of an encrypted resource eri.

As a next step, Snoopy identifies the actual web resource
that may correspond to each feature value in the array
FValues, serially. It does so by looking-up the dictionary
reverseFeatureDB. Apart from the fact that multiple resour-
ces may have the same feature value, the look-up procedure
is also not straightforward due to variations in feature val-
ues induced by tracking and session cookies.

To start with, we organize the information available (for
the website shown in Fig. 3) in the reverseFeatureDB (refer
to Fig. 4) as a stacked bar plot shown in Fig. 5a. The X-axis
represents encrypted resource size and the Y -axis repre-
sents the frequency of occurrence of the resources with a
particular size in the target website. For e.g., in Fig. 5a, r7
and r6 are stacked together and have the same size but r7

(embedded in two webpages) is twice as likely to occur as
compared to r6 (embedded in only one webpage), as indi-
cated by the height of the stacked bar. This is because, r7 is
embedded in two webpages, whereas r6 is embedded in
only one webpage. We begin the look-up process by consid-
ering a shaded region (around x ¼ f as shown in Fig. 5a)
that represents the area in which the actual resource
accessed by the user in trace T could be present. Subse-
quently, we refine our search by expanding and narrowing
down the shaded region in each step.

We now illustrate the look-up with a concrete example.
Example. Consider two encrypted resources er1 and er2

extracted from T such that er1 is accessed by the user before
er2. The feature values extracted from these two resources are
stored in the first two elements of the array FValues and proc-
essed sequentially. We assume without loss of generality that
Snoopy has predicted that the resource, say, r4, corresponds
to the first encrypted resource er1. We now describe how
Snoopy processes the feature value of the second resource er2.
Let us assume the second value stored in the array FValues is
f . Algorithm 2 shows the different steps of the process.

Step�1 : Broadening the search space –The goal of this step is
to broaden the space in which we search for the resource
corresponding to f (shown in Fig. 5a), since tracking and
session cookies may have changed the resource sizes. If f is
inclusive of the tracking cookies, it needs to be decre-
mented, and if f does not contain session cookies, it needs
to be incremented before performing a reverseFeatureDB
look-up. However, the presence or absence of these cookies
cannot be determined by Snoopy at this stage, since it does
not yet have the knowledge of the webpage from which the
user navigated to this encrypted resource. Moreover, the
identity of the resource is also not known. To account for
these unknown parameters, we use the maximum possible
values for tracking cookie and session cookie induced varia-
tions (maxðctÞ and maxðcsÞ respectively) in encrypted
resource size, retrieved from cookie var. Therefore, Snoopy
performs a look-up of all values in the range ½ðf �
maxðctÞÞ; ðf þmaxðcsÞÞ� and adds all the retrieved resources
to the multiset relevant resources. Multiple instances of a
resource are added to relevant resources if the resource is
associated with multiple webpages.

Step 1 of Fig. 5 shows that although f is closest to the
sizes of r4, r5, r6, and r7, it could also possibly belong to r2
or r3 due to the aforementioned variations. These resources
form the multiset relevant resources ¼ fr2; r3; r3; r4; r5;
r5; r6; r7; r7g, and is indicated by the shaded region in Step 1
of Fig. 5.

Step �2 : Reachability checking – In the real-world, a user
starts browsing from a particular webpage and navigates
using links embedded in the initial and subsequent web-
pages. Leveraging this, in this step Snoopy eliminates the
resources that are not navigable from previously accessed
webpages. For checking reachability, the CHECK_REACH-
ABILITY method leverages the website structure G and the
resource mapRM, and unlike prior works [14], [16], Snoopy
also considers multi-tab browsing. Snoopy eliminates those
resources that are not accessible from any of the previously
accessed webpages from any of the open tabs.

In the example, er1 (¼ r4) is the previously accessed
resource, which is uniquely associated to the webpage w3

Fig. 5. Steps involved in selecting resources that might correspond to a
given feature value.

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3743

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

(Refer to website structure in Fig. 3). Through reachability
check, we can infer that the resource er2 can come from
either of w3, w4, or w5, and not from w1 or w2. If there is any
resource in the relevant resources set that is associated with
w1 (we do not have r1 in this example) or w2 (i.e., r2 and r3),
its frequency should be reduced accordingly, i.e., the
shaded region shrinks in size. Therefore, the set of reachable
resources now contains fr3; r4; r5; r5; r6; r7; r7g, denoted by
reachable resources, indicated by the shaded region in
Step 2 of Fig. 5.

Algorithm 2. PREDICT_RESOURCE

input: f ,G,RM, cookie var, reverseFeatureDB,
predicted resources

output: predicted resources
/ * input predicted resources ¼ ; when f corresponds to

the first resource in T * /

/ * findset ofallpossibleresources whose encrypted

size might be equal to f after addition of track-

ing cookieor removal of session cookie * /

1: relevant resources = freverseFeatureDBðxÞ; 8x j ðf �max
ðctÞÞ � x � ðf þmaxðcsÞg;
/ * filter out unreachable resources * /

2: reachable resources = CHECK_REACHABILITY
(relevant resources, predicted resources,G,RM);
/ * estimate actual cookie-induced variation for

each resource based on their reachability

from different URLs. Update the list of

resources tobe considered accordingly. * /

3: reachable resources = UPDATE_RESOURCE_LIST
(reachable resources, cookie var);
/ * identify the most likely resource * /

4: predicted resources =
predicted resources.append(IDENTIFY_RESOURCE
(reachable resources, f))

Step �3 : Accounting for cookie-induced variations in reachable
resources – The goal of this step is to estimate the actual
encrypted feature value for each resource ri in the aforemen-
tioned step, based on information from reverseFeatureDB
and cookie var. For this, the UPDATE_RESOURCE_LIST
method computes ðsigi � ctðri; xÞ þ csðri; yÞÞ for each
resource ri in reachable resources, and eliminates all resour-
ceswhose updated feature value falls outside the range under
consideration. Snoopy estimates (1) ctðri; xÞ – which is the
length of the URL contained in its tracking cookie. When the
resource is associatedwith multiple URLs, some can be elimi-
nated through reachability checking; and, (2) csðri; yÞÞ – the
browser and OS information contained in the session cookie
in the Application layer header can be used. This information
(i.e., boy from Section 5.1), can be estimated by using existing
browser fingerprinting techniques [46] and OS fingerprinting
techniques [47].

This step further narrows down the search space. To illus-
trate this step, we shift all the reachable resources in Fig. 5c, as
shown in Fig. 5d. Note that the shaded region does not change
in this step. The resource r6 moves out of the shaded region
whereas r4, r5 and r7 remain unchanged since they have no
cookie induced variation. However, note that r3 is still under
consideration, since it lies within the broadened search space
evenwhen its cookies are accounted for.

Step �4 : Assigning Weightage to Resources –In this step,
Snoopy identifies the resource that is most likely to corre-
spond to er2 ¼ f . For this, Snoopy assigns a weightage to
each resource in reachable resources from the previous
step. The IDENTIFY_RESOURCE method measures the
proximity of each of these resources to f , given that their
cookie induced variations are accounted. It does so by tak-
ing a weighted average of their distance from f . Finally,
Snoopy considers the resource with the highest weightage
to be the one corresponding to er2. In this example, er2 is
predicted as r7. The output of this step is the sequence
of resources in T as predicted by Snoopy, denoted as
predicted resources.

5.2.2 Predicting Webpages Accessed by the User

Snoopy uses the longest common sub-sequence matching
algorithm for predicting accessed webpages from predicted
resources. Snoopy starts with the first resource (say, rp1), and
from the sequence set S, it identifies all the webpages where
rp1 is the first resource in the resource download sequence.
The same process is followed recursively for the subsequent
resources in predicted resources until the webpage with the
longest sub-sequencematch is found.When Snoopy identifies
the webpage, it adds the webpage to a set denoted as
predicted webpages. Note that predicted resourcesmay not be
empty yet since it could have the resources corresponding to
multiplewebpages. In such a case, the process is repeated.

Webpage identification becomes more challenging when
caching is enabled in the browser. When caching is enabled,
all the resources in the sequences in S for a webpage would
not get downloaded, and thereby forming a gap in the
sequence predicted resources. To handle such cases, during
matching, we allow the algorithm to skip resources in S of a
webpage as long as it is a cache-able resource and it has
been downloaded in the past.

6 IMPLEMENTATION AND EVALUATION

We first describe our implementation and define the metrics
used for evaluating Snoopy. Thereafter, we describe the
experimental setup, which includes the websites used for
evaluation, the user browsing scenarios considered for eval-
uation, and the traffic sample collection methodology. Sub-
sequently, we evaluate Snoopy by answering a set of
research questions.

6.1 Implementation

We implemented the functional modules of Snoopy as
Python libraries. We also compared Snoopy with relevant
state-of-the-art works on webpage fingerprinting such as
ML_PS [14], ML_IPS [14], ML_OPS [14], ML_BoG [16],
ML_LL [36], ML_KFP [18], ML_Wfin [21], and ML_CU-
MUL [19]. For this, we implemented these techniques to the
best of our abilities with the help of open-source Python
libraries [48]. While most of these ML-based techniques [14],
[16], [36] were solely designed for the purpose of webpage
fingerprinting over HTTPS, few others were not designed
with the exact same goal. Techniques such as k-FP [18] and
Wfin [21] were originally used for both website fingerprint-
ing (over Tor) and webpage fingerprinting (over HTTPS).
For our purpose, we only consider the following scenario

3744 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

that was presented in the k-FP [18] and Wfin [21] papers:
webpage fingerprinting over HTTPS. For instance, in this sce-
nario, k-FP uses features such as packet size, packet direc-
tion, and packet ordering. We used the same features and
classification algorithms in our implementation of k-FP.
Another technique, namely CUMUL [19], attempted to per-
form both website and webpage fingerprinting over Tor
(not HTTPS). For our purpose, we were only interested in
the webpage fingerprinting part of the paper. The paper pro-
posed the use of (i) a novel ML-based technique as well as
(ii) the use of a novel set of features (Tor and TLS features).
The paper concedes that CUMUL was unsuccessful in per-
forming webpage fingerprinting over Tor. This was mainly
attributed to Tor’s obfuscation of resource sizes, which ren-
dered the TLS features useless. We use CUMUL as bench-
mark in our experiments but on HTTPS traffic (i.e., a much
weaker defense than Tor). We expected CUMUL to perform
better against this weaker defense due to the absence of
Tor’s obfuscation of resource sizes. In our implementation,
we used the same ML-based technique and the TLS features
proposed in CUMUL but used them on HTTPS dataset.

Encrypted network traffic traces used for webpage fin-
gerprinting and testing was captured using TShark(v2.6.6)
packet capture tool, which was running on the network
gateway, although the same could be done by the attacker
at any intermediate network router in the real world.

6.2 Metrics

We define the metrics that we use for evaluating Snoopy
and existing state-of-the-art webpage identification techni-
ques as follows:

Generalization factors (GF): The set of factors related to
user’s browsing behavior that the webpage identifica-
tion technique aims to generalize across. GF �
fI; BC; T;O;B;Ng, where I denotes user interest and
thereby the set of webpages in the website that the
attacker needs to fingerprint, BC denotes the set of
browser configurations (cache and cookie settings) con-
sidered by the attacker, T denotes the number of tabs
used by a user in a browsing session, O indicates the set
of Operating Systems that the attacker generalizes
across, B denotes the set of Browsers, and N denotes
network conditions.

Number of Queries (Nq): The maximum number of website
queries (accesses) that an attacker can perform on the
targeted website for collecting traffic samples for train-
ing (webpage profiling).

Fingerprinting Accuracy (FA): The percentage of webpages
accessed by a user (of the target website) in a browsing
session that are correctly identified by a webpage iden-
tification technique.

6.3 Experimental setup

Websites Used. We evaluate Snoopy and related works [14],
[16], [18], [19], [21], [36] on 20 websites that include some of
the Fortune 100 companies, financial organizations, and ser-
vice-based companies from different parts of the world. The
scale of our experiments is at par with existing works on
webpage identification [13], [16], [18], [20], [22], [31], [32],
[34], [49]. As mentioned earlier, this paper deals with

webpage identification performed on a website of interest to the
adversary, in contrast to website identification that concerns
thousands of websites. Due to space constraints, we present
the results for ten of these websites, listed in Table 3, that
are representative of the entire set. The names of these web-
sites are anonymized to protect the websites from being tar-
gets of this attack.

User Browsing Scenarios. We consider different combina-
tions of (1) Operating Systems viz.; Ubuntu 18.04, and
Microsoft Windows 7, (2) Browsers viz.; Mozilla Firefox
63.0.3, and Google Chrome 67.0, (3) cache settings viz.; ON
and OFF, (4) cookie preferences viz.; Allowed and Prohib-
ited, and (5) network conditions. Users can start browsing
from any webpage in the website that they would be inter-
ested in, and browse the pages in any order. Further, we
also allow users to freely browse up to 15 different web-
pages in each browsing session, either sequentially or by
using multiple parallel tabs, with no restriction on the tran-
sition time from one webpage to another. Most existing
works do not consider cases where the users browse more
than one page in a session and even if they do, they restrict
it to a small number(for e.g., 4 in [20] and 2 in [17]). These
numbers are much lower than the average number of paral-
lel browser tabs used by website visitors, as pointed out in a
study3 conducted by Mozilla [50].

Traffic Sample Collection. We developed a Python bot for
collecting encrypted traffic samples for evaluating Snoopy
as well as the existing works. Our traffic collection bot used
Selenium for simulating behavior of real website users
while collecting test traffic samples. For creating webpage
fingerprints, our bot accessed the webpages as many times
as required by the different webpage fingerprinting techni-
ques, within the limits of the finite query model. Depending
on the requirements of our experiments, the bot performs
either sequential or single-page traffic sample collection.
We introduced a delay of 1 minute between subsequent
browsing sessions. We observed that repeated website
accesses from the same network to the same website needed
to be separated by this time in order for it to not be flagged
and blocked by the website. For evaluations that required
sequential browsing traffic samples, the browsing sequence
length was varied from 3 to 15 webpages per session. For
evaluations that required traffic samples collected over vari-
ous network conditions, the traffic sample collection was
conducted over several months and from different geo-
graphical locations to ensure variations in network condi-
tions. In addition to the webpage(s) accessed in a browsing
session (which is needed for computing the accuracy), our
bot also recorded the sequence of web objects downloaded
in each browsing session, which we use for additional
evaluation.

6.4 Results

In this section, we first evaluate the suitability of Snoopy in
the context of practical mass-surveillance. In the prior sec-
tions, we have discussed about the two key requirements
for conducting practical mass-surveillance – generalization

3. Mozilla has removed the dataset compiled for the Test Pilot study
conducted in 2010 from public domains. But we can speculate that the
trend of tabbed webpage browsing has only gone up in the last decade.

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3745

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

and compliance with a finite query model. Therefore, we
primarily evaluate Snoopy on these two parameters,
through experiments that intend to answer the following
questions.

Q1) How effective is Snoopy in different browsing con-
texts? (Refer to Section 6.4.1)

Q2) How is the effectiveness of Snoopy and related
works affected with changes in the value ofNq (num-
ber of queries allowed)? (Refer to Section 6.4.2)

Q3) How well does Snoopy generalize across user inter-
ests? (Refer to Section 6.4.3)

Q4) How well does Snoopy generalize across different
configurations of a browser? (Refer to Section 6.4.4)

Q5) How well does Snoopy generalize in terms of num-
ber of tabs used by the end user while browsing?
(Refer to Section 6.4.5)

Q6) How well does Snoopy generalize in terms of varia-
tions in Operating Systems? (Refer to Section 6.4.6)

Q7) How well does Snoopy generalize in terms of varia-
tions in Browsers? (Refer to Section 6.4.7)

Q8) How well does Snoopy generalize across various
network conditions? (Refer to Section 6.4.8)

6.4.1 Average Prediction Accuracy of Snoopy Across

Diverse Browsing Scenarios

We now show the prediction accuracy (FA) of Snoopy when
it builds webpage fingerprints (trains) for any one browsing
scenario and uses this information to predict user activities
across diverse browsing scenarios. For this experiment, we
considered all the 10 websites. For each website, we built a
training dataset where we consider GF ¼ fI; BC; T;
O;B;Ng such that, I = {all webpages in the website},
BC ¼ ffCaching ON, Cookies Allowedg; fCaching OFF,
Cookies Prohibitedgg, T ¼ 1, O ¼ fUbuntug, B ¼ fFirefoxg.
N was kept constant by collecting all traffic samples from
the same system within a short span of time. We collect 10
such traffic samples for each webpage.

For each website, we also build a test dataset, where we
consider I = {all webpages in the website}, vary BC across
the values ffCaching ON, Cookies Allowed g; fCaching ON,
Cookies Prohibitedg; fCaching OFF, Cookies Allowedg; f

Caching OFF, Cookies Prohibitedgg, vary T from 1 to 15,
vary O across the values fWindows;Ubuntug, and vary B
across the values fChrome; Firefoxg. The network condi-
tionsN were varied by collecting traffic samples over several
months from different geographical locations (refer to the
test dataset described in Section 6.3).

Table 4 shows the webpage prediction accuracy (FA) of
Snoopy on the 10 websites. The FA value is more than 90%
for most of the websites, indicating the ability of Snoopy to
generalize across different browsing contexts. In the rest of
this section, we show how the different factors in GF indi-
vidually influence the FA value of Snoopy, when subjected
to constraints on the value of Nq, the maximum number of
queries allowed to a website.

6.4.2 Compliance With a finite Query Model: Snoopy

versus ML-Based Solutions

We now evaluate Snoopy on its ability to comply with a
finite query model with respect to existing works. For this
experiment, we considered the website B 4 and generaliza-
tion factors GF ¼ fI; BC; T;O;B;Ng, where I is a set of 200
random webpages of the website B 4, BC ¼ ffCaching
OFF, Cookies Allowedgg, T ¼ 1, O ¼ fUbuntug, B ¼
fFirefoxg. N was constant since the traffic samples were
collected within a short span of time. Our test dataset com-
prised traffic traces from the website B 4 collected using the
above configuration. We built three different training data-
sets with traffic samples collected using the same configura-
tion, but varying the number of samples collected per
webpage. We set Nq, the maximum number of queries
allowed, as w	 s, where w is the number of webpages to be
fingerprinted and s is the number of traffic samples col-
lected per webpage. Keeping w ¼ 200 constant, we vary the
value of s as s ¼ 10; 5; and 3.

Fig. 6 plots the fingerprinting accuracy (FA) for Snoopy
and existing works for different values of s. From the figure,
we can observe that (1) When s ¼ 10, the prediction accu-
racy of Snoopy (77:75%) is at par with the existing ML-based
techniques, and; (2) When s ¼ 5 or s ¼ 3, we observed a
drop in FA of ML techniques (for e.g., from 78% to 58% in
case of ML_OPS [14]) . On the other hand, we can see that
FA for Snoopy remains unchanged even after lowering the

TABLE 4
Webpage Prediction Accuracy of Snoopy

Website No. of
webpages

Webpage identification accuracy

Accurately
identified (%)

Not
identified

(%)

Wrongly
identified (%)

IC_1 95 93 7 0
IC_2 849 89 11 0
B_1 444 99 1 0
B_2 458 99 1 0
B_3 549 97 0 3
B_4 965 88 11 1
B_5 1964 90 3 7
SBC 27 81 7 12
RS 20 75 21 4
PS 40323 83 17 0

Fig. 6. Importance of training set size Nq on fingerprinting accuracy FA
(in %) of existing ML models versus Snoopy (for 200 web pages).

3746 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

value of s. Since we have seen that for the three different s
values considered in this experiment, the ML models have
the highest FA value when s ¼ 10, we use s ¼ 10 to con-
strain the value of Nq for the finite query model assumed in
the rest of our experiments (shown in Sections 6.4.3, 6.4.4,
6.4.5, 6.4.6, 6.4.7, and 6.4.8).

6.4.3 Generalization Across User Interests

We now show how the fingerprinting accuracy (FA) of
Snoopy and existing works change with the number of
webpages of interest (I). For this experiment, we con-
sider the website B 4 and generalization factor GF ¼
fI; BC; T; O; B;Ng, where we set BC ¼ ffCaching OFF,
Cookies Allowedgg, T ¼ 1, O ¼ fUbuntug, B ¼ fFirefoxg.
N was constant since the traffic samples were collected
within a short span of time. We varied I as sets of
50; 100; and 200 webpages for building three different
training datasets. For this experiment, Nq ¼ jIj 	 10,
which is the constraint imposed by our finite query
model. For each of the training datasets, we built test
datasets using encrypted traffic traces with the same con-
straints as the training dataset.

Fig. 7 shows the fingerprinting accuracy (FA) of Snoopy
and existing works when the number of webpages of inter-
est increases. From the figure we can observe that (1)
Despite using a simple feature and a simple approach,
Snoopy gives the same prediction accuracy as some of the
best-performing ML-based techniques (e.g., ML_Wfin [21]),
and; (2) When jIj was increased from 50 to 100 and 200,
there was a fall in the value of FA for Snoopy as well as the
existing ML-based techniques. Even then, Snoopy gave the
same prediction accuracy as the best-performing ML-based
techniques (for e.g., ML_Wfin [21] and ML_OPS [14]).

A detailed inspection revealed that the drop in the FA
value of Snoopy when the size of I was gradually increased
was due to the fact that many of the webpages in the larger
sets had similar fingerprints. In Section 6.4.10, we will dis-
cuss the reason behind this in more details, and in Sec-
tion 6.5 we will discuss possible ways to improve the
fingerprinting accuracy (FA) of Snoopy.

6.4.4 Generalization Across Browser Configurations

Next, we evaluate Snoopy and existing works on their abil-
ity to generalize across different configurations of caching
and cookie settings for a given browser (BC). For this exper-
iment, we consider the website B 4 and GF ¼ fI; BC;
T;O;B;Ng, such that I is a set of 200 random webpages of
the website B 4, T ¼ 1, O ¼ fUbuntug, B ¼ fFirefoxg, and
N was constant. While building our training dataset, we
keep BC ¼ fCaching OFF, Cookies Allowed g constant, and
collect 10 samples of browsing traffic from each of the 200
webpages of B 4 that we considered. For this experiment,
Nq ¼ 200	 10, which is the constraint imposed by the finite
query model. In our test dataset, we vary BC across the val-
ues ffCaching OFF, Cookies Allowedg; fCaching ON,
Cookies Allowedgg, with all other factors similar to the
training dataset.

Table 5 shows a comparison of the fingerprinting accu-
racy (FA) of Snoopy and related works. For the straightfor-
ward case, where training and testing used the same BC
configuration, Snoopy achieves an FA that is comparable
(FA � 75%� 78%) to the best performing ML models as
expected. However, when the BC configurations for testing
and training were different, Snoopy outperforms even the
best ML techniques. For example, Snoopy achieves an FA ¼
72% as compared to ML_PS [14] that achieves FA ¼ 61%.

6.4.5 Support for Prediction on Multi-Tab Browsing

Traffic

We now evaluate Snoopy in the context of a real-world sce-
nario where the users of the targeted website open the web-
pages simultaneously in multiple parallel browser tabs (T).
For this experiment, we considered the website B 4 and
GF ¼ fI; BC; T;O;B;Ng, such that I is a set of 200 random
webpages of the website B 4, BC ¼ fCaching OFF, Cookies
Allowedg, O ¼ fUbuntug, B ¼ fFirefoxg, and N was con-
stant. While building our training dataset, we keep T ¼ 1
constant, and collect 10 samples of browsing traffic from
each of the 200 webpages of B 4 that we considered. For
this experiment, Nq ¼ 200	 10, which is the constraint
imposed by the finite query model. In our test dataset, we

Fig. 7. Fingerprinting accuracy FA of Snoopy versus existing techniques
for different number of webpages of interest.

TABLE 5
Accuracy (in %) of Snoopy versus ML Models When Tested on
Data Points From a Different Browser Configuration (for 200

Webpages)

Classifier Browser Cache Configuration

Training: OFF
Testing: ON

Training: OFF
Testing: OFF

SNOOPY 72 78
ML_PS [14] 61 75
ML_OPS [14] 60 78
ML_Wfin [21] 51 76
ML_BoG [16] 50 58
ML_LL [36] 14 16
ML_KFP [18] 4.5 7
ML_IPS [14] 3 20
ML_CUMUL [19] 2.5 6

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3747

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

vary T from 3 to 7 with all other factors similar to the train-
ing dataset.

Fig. 8 shows average the fingerprinting accuracy (FA) of
Snoopy for browsing sessions for the website B 4, involving
different number of parallel browser tabs. We observe that
even for 7 parallel browser tabs, the average fingerprinting
accuracy of Snoopy is more than 85%.

The traffic samples collected for building the training
dataset for Snoopy in this case correspond to single-tab sin-
gle-webpage browsing sessions. This is in contrast to exist-
ing works [13], [14], [16], [20] that fingerprint sequences
of webpage browsing traffic instead of single webpage
accesses. While existing techniques have been shown to
result in a high fingerprinting accuracy (FA), it magnifies
the number of website accesses required (Nq) to a great
extent. Table 6 shows a comparison of the number of web-
page sequences of length 3� 7 for the 10 websites we
selected for our experiments, with the number of individual
webpages that Snoopy would access for building finger-
prints. Existing works would require Nq ¼ l	 number of
traffic samples for training their models, where l is the num-
ber of webpage sequences possible. On the other hand,
Snoopy would require only Nq ¼ w	 number of traffic sam-
ples, where w ð
 lÞ is the number of webpages in the web-
site. Note that the number of webpage sequences shown in
Table 6 do not consider multiple occurrences of the same
webpage in a sequence. Considering such cases would have
further increased Nq for existing works. This might have
caused the website to block the adversary from collecting
traffic samples, and would have definitely escalated the
time required for collecting traffic samples, and training the
model. On the other hand, this would not impact the Nq

value for Snoopy. Latest works [17] that are closest to
Snoopy in terms of working principle have not been able to
obtain a considerable FA value beyond 2 parallel tabs.

6.4.6 Generalization Across Various Operating

Systems

We now evaluate Snoopy and existing works on their ability
to generalize across different operating systems (O). In this
experiment we consider the website IC 1 and GF ¼
fI; BC; T;O;B;Ng, such that I is the set of 95 webpages of
the website IC 1, BC = ffCaching OFF, Cookies Allowedgg,
T ¼ 1, B ¼ fFirefoxg, and N was constant. We built two
different training datasets, one where O ¼ fUbuntug was
kept constant, and another where O ¼ fWindowsg was kept

constant. For building each training dataset, we collected 10
samples of browsing traffic from each of the webpages in I.
For this experiment, Nq ¼ 95	 10, which is the constraint
imposed by the finite query model. In our test dataset, we
considered O ¼ fUbuntug, with all other factors similar to
the training datasets.

Table 7 shows a comparison of the fingerprinting accu-
racy (FA) of Snoopy and related works. When training
and testing were performed using traffic samples from the
same OS, Snoopy achieves an FA that is comparable
(FA � 94%� 98%) to the best performing ML model
ML_Wfin [21], as expected. However, when the OS used for
testing and training were different, Snoopy outperforms
even the best ML techniques by a huge margin. For exam-
ple, Snoopy achieves an FA ¼ 97:8% as compared to
ML_Wfin [21] that achieves FA ¼ 54:8%.

6.4.7 Generalization Across Various Browsers

We now evaluate Snoopy and existing works on their ability
to generalize across different browsers (B). In this experiment
we consider the website IC 1 and GF ¼ fI;BC;T;O;B;Ng,
such that I is the set of 95webpages of the website IC 1,BC =
ffCaching OFF, Cookies Allowedgg, T ¼ 1, O ¼ fUbuntug,
andN was constant. We built two different training datasets,
one where B ¼ fGoogle Chromeg was kept constant, and
anotherwhereB ¼ fFirefoxgwas kept constant. For building
each training dataset, we collected 10 samples of browsing
traffic from each of the webpages in I. For this experiment,
Nq ¼ 95	 10, which is the constraint imposed by the finite
query model. In our test dataset, we considered B ¼
fFirefoxg, with all other factors similar to the training
datasets.

Table 8 shows a comparison of the fingerprinting accu-
racy (FA) of Snoopy and related works. When training
and testing were performed using traffic samples from the
same browser, Snoopy achieves an FA that is comparable
(FA � 94%� 98%) to the best performing ML model
ML_Wfin [21], as expected. However, when the OS used for
testing and training were different, Snoopy outperforms
even the best ML techniques by a huge margin. For exam-
ple, Snoopy achieves an FA ¼ 85:9% as compared to
ML_Wfin [21] that achieves FA ¼ 13:8%.

Fig. 8. Fingerprinting accuracy (FA) of Snoopy in multi-tab browsing sce-
nario (for website B 4).

TABLE 6
Snoopy versus Existing Works: Number of Website Accesses
Required for Fingerprinting in Multi-Tab Browsing Scenario

WebsiteNumber of unique webpage
sequences (Sequence

Length: 3-7)l)

Minimum number of
website accesses required

by Snoopyw)

IC_1 586 95
IC_2 170,538 849
B_1 9,291,522 444
B_2 1199 458
B_3 13,617 549
B_4 7,000 965
B_5 103,116 1964
SBC 3,271 27
RS 1,159 20
PS 11 11

3748 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

6.4.8 Generalization Across Network Conditions

We did not observe any changes in the fingerprinting accu-
racy of Snoopy due to small-scale natural network fluctua-
tions. The results shown in Table 4 reflects the prediction
accuracy of Snoopy across diverse network conditions. The
traffic samples that were used for profiling were collected
over a steady network connection within a short span of
time. On the contrary, the test traffic traces were collected
over a month from different geographical regions to ensure
sufficient diversity in network conditions.

To further test the limits of Snoopy, we introduced artifi-
cial perturbations in the compromised network device over
an hour by randomly adding delays of 50ms to 80ms and
throttling the bandwidth by 20%. In this case, we encoun-
tered significant packet drops. This resulted in incomplete
download of web resources on several instances, and conse-
quently Snoopy could not identify the webpages correctly.
The percentage of cases where the webpages could not be
identified by Snoopy has been indicated in Table 4.

6.4.9 Resource-Level Prediction Accuracy of Snoopy

We now present more detailed evaluation results about the
performance of Snoopy. This includes individual resource-
level prediction accuracy of Snoopy and the correlation
between resource-level prediction accuracy and webpage-
level prediction accuracy. We also analyze the cases where
Snoopy fails to accurately identify the webpages accessed,
and propose potential solutions to effectively handle such
scenarios.

Table 9 shows the resource prediction accuracy of Snoopy
on the ten websites. While for most of the websites Snoopy
had a prediction accuracy of more than 70%, in a few cases,
we witnessed an accuracy of less than 50%. For websites with
a very low number of resources (for instance, IC_1 and RS)
Snoopy had a high prediction accuracy since the encrypted
size of most of the resources were very distinct from each
other. On the other hand, Snoopy had a low prediction accu-
racy for most websites with a high number of resources (for
instance, B_2 and B_5). This is because, in practice, most of the
web resources in such websites have similar sizes. However,
the website IC_2 was an exception where Snoopy had a rela-
tively high prediction accuracy despite a large number of

resources. This was because, most of the resources in this
website had distinct sizes. Also, note that out of the 55 resour-
ces in the website PS, only 11 resources were of interest to the
adversary, and their download sequence was sufficient to
identify all the 40323 webpages uniquely. Details about this
can be found in our recent work [44].

6.4.10 Relation Between Resource Prediction

Accuracy and Webpage Prediction Accuracy

As seen from Tables 4 and 9, the relationship between web
resource prediction and webpage prediction accuracy is not
straightforward. We now discuss three different scenarios
that we encountered during the evaluation of Snoopy.

Case 1: High resource prediction accuracy and high webpage
prediction accuracy. In case of websites IC_1 and B_3, we
observed a high correlation between web resource predic-
tion accuracy (91%� 94%) and webpage prediction accu-
racy (93%� 97%). While such results are quite intuitive,
such direct correlation was not observed in case of some
other websites;

Case 2: Low resource prediction accuracy and high webpage
prediction accuracy. In case of IC_2, B_1, B_2 and B_5, we see

TABLE 7
Accuracy (in %) of Snoopy versus ML Models When Tested on

Data Points From a Different Operating System (for 95
Webpages)

Classifier Operating System

Training: Windows
Testing: Ubuntu

Training: Ubuntu
Testing: Ubuntu

SNOOPY 97.8 97.9
ML_Wfin [21] 54.8 93.7
ML_CUMUL [19] 21.5 78
ML_KFP [18] 15.0 65.2
ML_BoG [16] 2.1 77.9
ML_PS [14] 1.1 77.9
ML_IPS [14] 1.1 62.1
ML_OPS [14] 1.1 55.8
ML_LL [36] 1 40.0

TABLE 8
Accuracy (in %) of Snoopy versus ML Models When Tested on

Data Points From a Different Browser (for 95 Webpages)

Classifier Browser

Training: Chrome
Testing: Firefox

Training: Firefox
Testing: Firefox

SNOOPY 85.9 97.9
ML_Wfin [21] 13.8 93.7
ML_PS [14] 8.0 77.9
ML_OPS [14] 8.0 55.8
ML_IPS [14] 5.7 62.1
ML_LL [36] 5.7 40.0
ML_CUMUL [19] 3.4 78
ML_BoG [16] 2.3 77.9
ML_KFP [18] 2.3 65.2

TABLE 9
Prediction Accuracy of Resources in Bot Traces

Website No of
resources

Resource identification accuracy

Accurately
identified (%)

Unidentified resources

Incomplete
download (%)

Conflict
(%)

IC_1 187 94 5 1
IC_2 19,163 71 19 10
B_1 865 69 7 24
B_2 12,435 47 52 1
B_3 688 91 5 4
B_4 3472 83 1 16
B_5 3,998 68 26 6
SBC 277 81 7 12
RS 204 94 6 0
PS 55 ð11#Þ 15 ð76##Þ - 0

#The number indicates the resources that are of interest to the adversary.
##Accuracy computed with respect to the number of resources of interest.

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3749

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

low values of resource prediction accuracy (47%� 75%) but
relatively high values of webpage prediction accuracy
(89%� 99%). The website B_2 exhibits an extreme case of
this behavior with only 47% resource prediction accuracy
but 99% webpage prediction accuracy. The reason for this is
though the overall resource prediction accuracy was low,
Snoopy was able to identify the critical resources that are
unique to a webpage; and,

Case 3: High resource prediction accuracy and low webpage
prediction accuracy. In case of the website RS, though the
resource prediction accuracy was high (94%), the webpage
prediction accuracy was relatively low (75%). This was
because most of the web resources that Snoopy could pre-
dict correctly were non-critical resources that were shared
by multiple webpages.

Failure Analysis – Our analysis reveals that the most com-
mon reasons due to which Snoopy could not perform well
are (1) when the identified resources are associated with a
lot of other webpages; (2) when the resources critical for
identifying a webpage are already cached at the browser
and do not get downloaded; and, (3) increase in number of
possible webpage transitions in case of multi-tab browsing.
For instance, Snoopy may correctly identify a web resource
but may not be able to determine which tab it came from in
case webpages open on multiple tabs at the same time share
the resource. This increases the confusion and leads to
incorrect predictions. To improve the webpage prediction
accuracy in cases where Snoopy has a poor accuracy, we
explore an ensemble of Snoopy and a ML-based technique
in Section 6.5, that complies with the constraints of a finite
query model.

6.5 Snoopy-ML Ensemble

Our experiments (Refer to Section 6.4) show that there are cer-
tain cases where the webpage prediction accuracy of Snoopy
is approximately 80%. This is comparatively lower than most
of the other websites where Snoopy could achieve a predic-
tion accuracy ofmore than 90%. Thismotivated us to design a
small experiment where we analyze the effectiveness of ML-
based webpage identification techniques in classifying only
thosewebpages that Snoopy fails to classify.

6.5.1 Experiment 1

For our experiment we consider the website B_4, and the
scenario described in Section 6.4.3, where we study the gen-
eralization capability of Snoopy and ML-based techniques
in terms of user interests. We had observed that for 200
webpages of website B_4 and 10 traffic samples per web-
page, Snoopy had achieved a prediction accuracy of 78%.
We first examine how the best-performing ML-based tech-
nique, ML_Wfin [21], performs when trained and tested on
only those webpages that Snoopy failed to identify.

We first inspect the prediction results of Snoopy and
identify 70 out of 200 webpages that Snoopy could not pre-
dict correctly. Next, we train the ML_Wfin model using 10
samples from each of these 70 webpages. During validation,
the ML model assigns a probability to each of these 70 clas-
ses (webpages) for each validation point. For a given valida-
tion point (say, tj), the webpage that gets assigned the
highest probability (denoted as Pj) is the prediction output.

For the 70 webpages, we observe a validation accuracy of �
94%. The results of this experiment motivated us to explore
if there is a way to combine Snoopy and an ML-based tech-
nique into an ensemble that outperforms each of the identi-
fication techniques individually; subject to the limitations
on the number of queries.

6.5.2 Experiment 2

We build a very basic ensemble model with Snoopy and
ML_Wfin [21] as sub-modules. We train (webpage profiling)
Snoopy on 130 webpages of the website B_4, while we train
ML_Wfin on the remaining 70 webpages of B_4. We use 10
traffic samples from each webpage for this training. Fig. 9
shows how this ensemble is used for predicting webpages
accessed in a given encrypted trace T . The trace T is first
passed to ML_Wfin for prediction. ML_Wfin predicts one
out of the 70 webpages it has been trained with, with a prob-
ability PML. Based on our insights from Experiment 1 (refer
to Section 6.5.1), we calculate a threshold probability Pv ¼
minðPjÞ; 8j (where, Pj is the maximum probability assigned
to a class by ML_Wfin for validation point tj) to determine
if T belongs to one of the 70 webpages that ML_Wfin was
trained with.

If PML � ðPv � 10Þ (error margin = 10%), we consider the
webpage predicted by ML_Wfin as the ensemble output. If
PML < ðPv � 10Þ, the trace T is passed to Snoopy for predic-
tion, and we consider the class predicted by Snoopy as the
ensemble output. For the scenario we considered in Experi-
ment 1, the observed value of Pv was 32:5%.

For testing this basic ensemble, we use a dataset compris-
ing encrypted traffic traces from the website B 4, collected
using the same browsing context as the training dataset.
Our ensemble achieved a prediction accuracy of 97%, which
is much higher than the accuracy achieved by Snoopy (78%)
or ML_Wfin (76%) separately. Since in this experiment we
considered the case where generalization is performed only
with respect to user interests, we did not need additional
training samples for ML_Wfin. However, note that we
would have to collect more training samples for ML_Wfin if
we considered other factors in GF as well. While this might
not be the best possible ensemble, the fact that even such a
basic ensemble achieved a high accuracy shows an interest-
ing future research direction.

7 COUNTERMEASURES

Existing countermeasures [15], [51], [52], [53] perform traffic
pattern obfuscation to preventwebsite/webpagefingerprinting

Fig. 9. Webpage prediction by Snoopy-ML ensemble.

3750 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

attacks. Deployment of these countermeasures require the par-
ticipation and co-operation of the website users. Website user
participation was acceptable in these cases since these counter-
measureswere primarily designed for protecting the privacy of
website users. However, the privacy leak presented in our
work is more critical to organizations than the website users. In
such a case, existing countermeasures cannot be deployed.
Instead, we explore alternatives that can be deployed by the
organizations, even without the participation of their website
users.

Snoopy, although presented as a webpage fingerprinting
technique, can also be seen as a tool that can be leveraged
by organizations to design websites that are resilient to
mass surveillance, before they are deployed in the public
domain. Once a website has been designed, the web devel-
oper of the organization can set up a local test-bed to gener-
ate encrypted traffic traces corresponding to different
browsing contexts that mimic real website users. The devel-
oper can then use Snoopy to determine if these traces are
vulnerable. If so, the detailed prediction reports of Snoopy
can help the developer understand which resources in the
website leak information. Following are some of the ways in
which the detailed report can be used for designing a
countermeasure:

Altering the Web Resources. The web developer can alter
the size of the vulnerable web resources (e.g., images, vid-
eos, texts) and/or change the sequence in which they get
downloaded. Web resource sizes can be changed either by
padding them with extra bytes or by re-rendering them
from scratch. For changing the download order, the devel-
oper can either modify the HTML or, when HTTP/2
deployment is available, change the download priority of
resources.

Restructuring the Website. Restructuring websites can
sometimes help minimize the impact of surveillance on the
privacy of the organization. For instance, a news website
that features one news article per webpage can be restruc-
tured by grouping multiple articles in a webpage. Although
Snoopy may still infer the webpage accessed, the informa-
tion may not be useful in estimating the popularity of news
articles on that webpage.

8 CONCLUSION

In this article, we proposed Snoopy, a webpage fingerprint-
ing framework for performing mass surveillance while com-
plying with a finite query model. Snoopy achieves this
objective with � 90% accuracy, across various browsing
contexts, while requiring only 3� 10 traffic samples per
webpage. Furthermore, for cases where the standalone
Snoopy framework was not sufficient, we presented a pre-
liminary Snoopy-ML ensemble model that achieved � 97%
accuracy. We believe that this paper will motivate research-
ers to design countermeasures against ETA-based mass-
scale privacy attacks.

REFERENCES

[1] Personal data of 533m Facebook users leaked for free on the Dark
Web, 2021. Accessed: Mar. 22, 2022. [Online]. Available: https://
www.teiss.co.uk/533m-facebook-users-data-leaked-dark-web/

[2] Cyber criminals leak personal data of 2.9 cr Indians on dark web for
free, 2020. Accessed: Mar. 22, 2022. [Online]. Available: https://
economictimes.indiatimes.com/tech/ites/cyber-criminals-leak-
personal-data-of-2–9-cr-indians-on-dark-web-for-free/articleshow/
75904331.cms

[3] Facebook–Cambridge Analytica data scandal, 2018. Accessed:
Mar. 22, 2022. [Online]. Available: https://en.wikipedia.org/
wiki/Facebook–Cambridge_Analytica_data_scandal

[4] Y.-W. Seo and B.-T. Zhang, “Learning user’s preferences by ana-
lyzing web-browsing behaviors,” in Proc. 4th Int. Conf. Auton.
Agents, 2000, pp. 381–387.

[5] S. E. Middleton, D. C. De Roure, and N. R. Shadbolt, “Capturing
knowledge of user preferences: Ontologies in recommender sys-
tems,” in Proc. 1st Int. Conf. Knowl. Capture, 2001, pp. 100–107.

[6] J. Hong, “The state of phishing attacks,” Commun. ACM, vol. 55,
no. 1, pp. 74–81, 2012.

[7] V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “Anatomy of
drive-by download attack,” in Proc. 11th Australas. Inf. Secur.
Conf., 2013, pp. 49–58.

[8] A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework
for classifying denial of service attacks,” in Proc. Conf. Appl. Technol.
Architectures Protoc. Comput. Commun., 2003, pp. 99–110.

[9] S. Goel, J. M. Hofman, and M. I. Sirer, “Who does what on the
web: A large-scale study of browsing behavior,” in Proc. Int. AAAI
Conf. Web Soc. Media, 2012, pp. 130–137.

[10] L. Olejnik, C. Castelluccia, andA. Janc, “Why Johnny can’t browse in
peace:On the uniqueness ofwebbrowsing history patterns,” inProc.
Workshop Hot Topics Privacy Enhancing Technol., 2012, pp. 48–63.

[11] H. M€uller and A. Sedley, “HaTS: Large-scale in-product measure-
ment of user attitudes & experiences with happiness tracking
surveys,” in Proc. Future Des., 2014, pp. 308–315.

[12] S. Bird, I. Segall, and M. Lopatka, “Replication: Why we still can’t
browse in peace: On the uniqueness and reidentifiability of web
browsing histories,” in Proc. 16th USENIX Conf. Usable Privacy
Secur., 2020, pp. 489–503.

[13] G. Danezis, “Traffic analysis of the HTTP protocol over TLS,” 2010.
[Online]. Available: http://www0.cs.ucl.ac.uk/staff/G.Danezis/
papers/TLSanon.pdf

[14] P. Chapman and D. Evans, “Automated black-box detection of
side-channel vulnerabilities in web applications,” in Proc. 18th
ACM Conf. Comput. Commun. Secur., 2011, pp. 263–274.

[15] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proc.
ACM Conf. Comput. Commun. Secur., 2012, pp. 605–616.

[16] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar, “I know why
you went to the clinic: Risks and realization of HTTPS traffic ana-
lysis,” in Proc. Int. Symp. Privacy Enhancing Technol. Symp., 2014,
pp. 143–163.

[17] X. Gu, M. Yang, and J. Luo, “A novel website fingerprinting attack
against multi-tab browsing behavior,” in Proc. IEEE 19th Int. Conf.
Comput. Supported Cooperative Work Des., 2015, pp. 234–239.

[18] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in Proc. 25th USENIX Conf. Secur.
Symp., 2016, pp. 1187–1203.

[19] A. Panchenko et al., “Website fingerprinting at internet scale,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2016.

[20] Y. Xu, T. Wang, Q. Li, Q. Gong, Y. Chen, and Y. Jiang, “A multi-
tab website fingerprinting attack,” in Proc. 34th Annu. Comput.
Secur. Appl. Conf., 2018, pp. 327–341.

[21] J. Yan and J. Kaur, “Feature selection for website fingerprinting,”
Proc. Priv. Enhancing Technol., vol. 2018, no. 4, pp. 200–219, 2018.

[22] H. F. Alan and J. Kaur, “Client diversity factor in HTTPS webpage
fingerprinting,” in Proc. 9th ACM Conf. Data Appl. Secur. Privacy,
2019, pp. 279–290.

[23] V. Ghi€ette and C. Doerr, “Scaling website fingerprinting,” in Proc.
IFIP Netw. Conf., 2020, pp. 199–207.

[24] M. Shen, Y. Liu, L. Zhu, X. Du, and J. Hu, “Fine-grained webpage
fingerprinting using only packet length information of encrypted
traffic,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 2046–2059,
Dec. 2020.

[25] K. Wang, J. Zhang, G. Bai, R. Ko, and J. S. Dong, “It’s not just the
site, it’s the contents: Intra-domain fingerprinting social media web-
sites through CDN bursts,” in Proc. Web Conf., 2021, pp. 2142–2153.

[26] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep finger-
printing: Undermining website fingerprinting defenses with deep
learning,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2018, pp. 1928–1943.

MITRA ETAL.: SNOOPY: A WEBPAGE FINGERPRINTING FRAMEWORKWITH FINITE QUERY MODEL FOR MASS-SURVEILLANCE 3751

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

https://www.teiss.co.uk/533m-facebook-users-data-leaked-dark-web/
https://www.teiss.co.uk/533m-facebook-users-data-leaked-dark-web/
https://economictimes.indiatimes.com/tech/ites/cyber-criminals-leak-personal-data-of-2--9-cr-indians-on-dark-web-for-free/articleshow/75904331.cms
https://economictimes.indiatimes.com/tech/ites/cyber-criminals-leak-personal-data-of-2--9-cr-indians-on-dark-web-for-free/articleshow/75904331.cms
https://economictimes.indiatimes.com/tech/ites/cyber-criminals-leak-personal-data-of-2--9-cr-indians-on-dark-web-for-free/articleshow/75904331.cms
https://economictimes.indiatimes.com/tech/ites/cyber-criminals-leak-personal-data-of-2--9-cr-indians-on-dark-web-for-free/articleshow/75904331.cms
https://en.wikipedia.org/wiki/Facebook--Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook--Cambridge_Analytica_data_scandal
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf

[27] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W.
Joosen, “Automatedwebsite fingerprinting through deep learning,”
inProc. Netw. Distrib. Syst. Secur. Symp., 2018.

[28] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A criti-
cal evaluation of website fingerprinting attacks,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2014, pp. 263–274.

[29] P. Dubroy and R. Balakrishnan, “A study of tabbed browsing
among mozilla firefox users,” in Proc. SIGCHI Conf. Hum. Factors
Comput. Syst., 2010, pp. 673–682.

[30] J. Huang and R.W.White, “Parallel browsing behavior on theweb,”
inProc. 21st ACMConf. Hypertext Hypermedia, 2010, pp. 13–18.

[31] H. Cheng and R. Avnur, “Traffic analysis of SSL encrypted web
browsing,” Project Paper, Univ. Berkeley, 1998.

[32] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan,
and L. Qiu, “Statistical identification of encrypted web browsing
traffic,” in Proc. IEEE Symp. Secur. Privacy, 2002, pp. 19–30.

[33] X. Gong, N. Borisov, N. Kiyavash, and N. Schear, “Website detec-
tion using remote traffic analysis,” in Proc. Int. Symp. Privacy
Enhancing Technol. Symp., 2012, pp. 58–78.

[34] Z. Zhuo, Y. Zhang, Z.-L. Zhang, X. Zhang, and J. Zhang, “Website
fingerprinting attack on anonymity networks based on profile
hidden Markov model,” IEEE Trans. Inf. Forensics Secur., vol. 13,
no. 5, pp. 1081–1095, May 2018.

[35] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting
with n-shot learning,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2019, pp. 1131–1148.

[36] M. Liberatore and B. N. Levine, “Inferring the source of encrypted
HTTP connections,” in Proc. 13th ACM Conf. Comput. Commun.
Secur., 2006, pp. 255–263.

[37] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fin-
gerprinting in onion routing based anonymization networks,” in
Proc. 10th Annu. ACM Workshop Privacy Electron. Soc., 2011,
pp. 103–114.

[38] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg,
“Effective attacks andprovable defenses forwebsite fingerprinting,”
inProc. 23rdUSENIXConf. Secur. Symp., 2014, pp. 143–157.

[39] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and M.
Wright, “Tik-tok: The utility of packet timing in website finger-
printing attacks,” Proc. Privacy Enhancing Technol., vol. 3, pp. 5–24,
2020.

[40] Internet censorship and surveillance by country, 2021. Accessed:
Mar. 22, 2022. [Online]. Available: https://en.wikipedia.org/wiki/
Internet_censorship_and_surveil-lance_by_country,note¼

[41] K. Garimella, T. Smith, R. Weiss, and R. West, “Political polariza-
tion in online news consumption,” in Proc. Int. AAAI Conf. Web
Soc. Media, 2021, pp. 152–162.

[42] Hypertext Transfer Protocol Version 2 (HTTP/2), 2015. Accessed:
Mar. 22, 2022. [Online]. Available: https://tools.ietf.org/html/
rfc7540

[43] Hypertext Transfer Protocol Version 3 (HTTP/3), 2020. Accessed:
Mar. 22, 2022. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-quic-http-32

[44] G. Mitra, P. K. Vairam, P. Slpsk, N. Chandrachoodan, and V.
Kamakoti, “Depending on HTTP/2 for privacy? Good luck!,” in
Proc. IEEE/IFIP 50th Annu. Int. Conf. Dependable Syst. Netw., 2020,
pp. 278–285.

[45] M. Trevisan, S. Traverso, E. Bassi, and M. Mellia, “4 years of EU
cookie law: Results and lessons learned,” in Proc. Int. Symp. Pri-
vacy Enhancing Technol. Symp., 2019, pp. 126–145.

[46] M. Hus�ak, M. �Cerm�ak, T. Jirs�ık, and P. �Celeda, “HTTPS traffic
analysis and client identification using passive SSL/TLS finger-
printing,” EURASIP J. Inf. Secur., vol. 2016, no. 1, pp. 1–14 2016.

[47] M. La�stovi�cka, S. �Spa�cek, P. Velan, and P. �Celeda, “Using TLS fin-
gerprints for OS identification in encrypted traffic,” in Proc. IEEE/
IFIP Netw. Operations Manage. Symp., 2020, pp. 1–6.

[48] Implementation of existing webpage fingerprinting techniques,
2019. Accessed: Mar. 22, 2022. [Online]. Available: https://github.
com/hfalan/codaspy19

[49] M. Shen, Y. Liu, S. Chen, L. Zhu, and Y. Zhang, “Webpage finger-
printing using only packet length information,” in Proc. IEEE Int.
Conf. Commun., 2019, pp. 1–6.

[50] Open this story in a new tab, 2010. Accessed: Mar. 22, 2022.
[Online]. Available: https://slate.com/human-interest/2010/12/
a-new-data-set-from-firefox-reveals-our-browsing-habits.html

[51] J. Gong and T. Wang, “Zero-delay lightweight defenses against
website fingerprinting,” in Proc. 29th USENIX Secur. Symp., 2020,
pp. 717–734.

[52] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-
Boo, I still see you: Why efficient traffic analysis countermeasures
fail,” in Proc. IEEE Symp. Secur. Privacy, 2012, pp. 332–346.

[53] Z. Ling, G. Xiao, W. Wu, X. Gu, M. Yang, and X. Fu, “Towards an
efficient defense against deep learning based website finger-
printing,” in Proc. IEEE Conf. Comput. Commun., 2022, pp. 310–319.

Gargi Mitra received the BTech degree in computer science & engineer-
ing from St. Thomas’ College of Engineering & Technology. She is cur-
rently working toward the PhD degree in the Interdisciplinary Research
Program (CSE-EE) with IIT Madras. Her areas of research interest
include Internet security and privacy.

Prasanna Karthik Vairam received the MTech degree from IIT Bombay,
and the PhD degree from IIT Madras. He is a lecturer with the School of
Computing, National University of Singapore. His research interests
include blockchains, approximate data structures, and systems security.

Sandip Saha received the BTech degree in computer science & engi-
neering from Jalpaiguri Government Engineering College. He is currently
working toward the MS degree with IIT Madras. His research interests
include internet security.

Nitin Chandrachoodan (Member, IEEE) received the BTech degree in
electronics and communication engineering from IIT Madras, in 1996,
and the PhD degree from the University of Maryland, College Park, in
2002. He is an associate professor with IIT Madras. His research inter-
ests include digital systems design and security. He is also an associate
editor of the Journal of Signal Processing Systems (Springer).

V. Kamakoti is a professor and the director of IIT Madras. He special-
izes in the areas of computer architecture, secure systems engineering,
and network security and privacy. He is a coordinator of the Information
Security Education and Awareness program of the Department of Infor-
mation Technology, Government of India and the chairman of the Task
Force on Artificial Intelligence for India’s Economic Transformation. He
has also won several awards such as the IBM Faculty Award (2016).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3752 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:51:03 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Internet_censorship_and_surveil-lance_by_country,note=
https://en.wikipedia.org/wiki/Internet_censorship_and_surveil-lance_by_country,note=
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/draft-ietf-quic-http-32
https://tools.ietf.org/html/draft-ietf-quic-http-32
https://github.com/hfalan/codaspy19
https://github.com/hfalan/codaspy19
https://slate.com/human-interest/2010/12/a-new-data-set-from-firefox-reveals-our-browsing-habits.html
https://slate.com/human-interest/2010/12/a-new-data-set-from-firefox-reveals-our-browsing-habits.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

