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Abstract

The increasing use of machine learning (ML) in medical systems
necessitates robust security measures to mitigate potential threats.
Current research often overlooks the risk of adversaries injecting
false inputs through peripheral devices at inference time, leading
to mispredictions in patients’ conditions. These risks are hard to
foresee and mitigate during the design phase since the system is
assembled by end users at the time of use. To address this gap, we
introduce SAM, a technique that enables security analysts to per-
form System Theoretic Process Analysis for Security (STPA-Sec) on
ML-enabled medical devices during the design phase. SAM models
the medical system as a control structure, with the ML engine as the
controller and peripheral devices as potential points for false data
injection. It interfaces with state-of-the-art vulnerability databases
and Large Language Models (LLMs) to automate the discovery
of vulnerabilities and generate a list of possible attack paths. We
demonstrate the usefulness of SAM through case studies on two
FDA-cleared medical devices: a blood glucose management system
and a bone mineral density measurement software. SAM allows
security analysts to expedite the security assessment of ML-enabled
medical devices at the design phase. This proactive approach mit-
igates potential patient harm and reduces costs associated with
post-deployment security measures.
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1 Introduction

There is a growing trend to incorporate machine learning (ML)
into medical applications [31] to automate remote patient moni-
toring, enhance diagnosis and treatment, and improve healthcare
accessibility in remote locations with limited availability of medical
experts. Over 800 such devices are registered with the U.S. FDA
as of today [35] with some used in life-critical scenarios, such as
live surgical assistance [38] and generation of treatment plans [39].
Therefore, mispredictions by the ML algorithms may lead to health
complications and even death of the patient. Common causes of
such mispredictions are issues with the training data, device fail-
ures, and security attacks [18, 41]. This paper focuses on security
attacks, specifically inference-time false (input) data injection attacks,
on ML-enabled medical systems at the time of use.

Detecting and preventing false data injection attacks in ML-
enabled medical systems is challenging. Malicious inputs are diffi-
cult to detect due to the complexity and often unexplainable nature
of ML models [3], along with variations in patients’ physiological
characteristics. Therefore, it is imperative to prevent such attacks.
However, preventing these attacks in ML-enabled medical systems
is equally challenging because of the large and complex attack sur-
face, involving multiple interconnected devices. At the core of an
ML-enabled medical system is an ML-enabled device! that acts as a
controller (e.g., a blood glucose monitoring app), processes inputs
from peripheral sensor devices (e.g., glucose meters, smartwatches),
makes predictions/decisions (e.g., insulin doses) and sends outputs
to actuators (e.g., insulin pumps). Unlike other ML-enabled systems
(such as industrial systems and automotive), the final assembly
of medical systems is done by end users (patients or healthcare
providers) oblivious to security risks. Moreover, they might have
multiple options for each peripheral device (e.g., glucose meters
from various brands), each having different vulnerabilities. Even if
the ML-enabled software is secure, the system is at risk if vulnerable
peripherals are connected, allowing adversaries to inject malicious
inputs. It is difficult for developers to foresee these security risks.

!This ML-enabled device is either software that can be installed on a general-purpose
computer or one that is bundled with proprietary hardware.
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Existing efforts to secure ML-enabled medical systems focus on
enhancing device security and ML model resilience [24]. However,
even resilient ML models can be vulnerable to new attacks [5].
Evaluating the ML model’s security alone fails to address scenarios
where adversaries inject malicious inputs through peripheral de-
vices and communication channels. Anticipating these scenarios
would enable device manufacturers® as well as independent secu-
rity analysts to foresee and mitigate post-deployment security risks
early, enhancing the safety of critical medical systems. This would
reduce costs associated with post-attack damage control and accel-
erate security assessments through automation, minimizing human
errors. It would also facilitate the evaluation of system security
whenever new vulnerabilities in peripheral devices are reported.

To enable this analysis, we developed SAM (STPA-Sec for ML-
enabled Medical Devices), a technique to identify system-wide
security risks due to false data injection in ML-enabled medical
systems. SAM adopts system-theoretic process analysis for security
(STPA-Sec) [43], a technique for identifying how an adversary can
exploit security vulnerabilities in interconnected components to
cause the system to malfunction, potentially leading to a safety
hazard. Along the same principles and assuming the ML model is
running on a secure cloud-based environment, SAM aims to detect
all possible ways an adversary can exploit known vulnerabilities in
peripheral devices and communication channels to inject malicious
data into the ML-enabled device, leading to either misdiagnoses or
incorrect treatment plans, eventually harming the patients. The pro-
cess involves four steps, namely (1) modeling the medical system
as a control structure, (2) understanding the ML technique’s suscep-
tibility to malicious data, (3) identifying insecure control actions
that could cause mispredictions, and (4) identifying all possible
malicious data injection paths leading to these insecure actions.

Designing SAM presents two main challenges. First, an ML-
enabled medical system includes multiple peripheral devices, and a
user has multiple choices for each device, each of which can have
vulnerabilities in various technological layers (e.g., communication
protocols, third-party software, operating systems, firmware) or
due to human interactions and operating environments. Identifying
all these vulnerabilities is challenging. To address this, we abstract
these devices into technological layers and operational factors, sub-
sequently identifying known vulnerabilities in these layers using
databases like MITRE CVE [17] and the National Vulnerability Data-
base [19]. Second, understanding how each vulnerability can cause
the ML model to mispredict and affect patients requires expertise
in ML vulnerabilities, system security, and the medical domain.
To facilitate this, we use LLMs trained on extensive medical and
attack information. We design LLM queries (prompts) to automate
the identification of potential attack paths for data injection and
assess the impact of mispredictions on patients, using the medical
system’s description and the vulnerabilities in its peripherals.

Contributions: Our contributions are summarized as follows.

e We propose a technique for comprehensively identifying
vulnerabilities in the ML techniques, and vulnerabilities in
peripheral devices of ML-enabled medical systems.

2A security expert working in the same company and having the same knowledge
about the ML-enabled device as its manufacturer
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Figure 1: Overall Workflow of SAM

e We devise an LLM-powered technique to automate the iden-
tification of potential false data injection paths, their impact
on ML model predictions, and the consequences for patients.

e We perform two case studies using SAM on - (1) d-Nav [37],
a blood glucose monitoring system and, (2) ABMD [34], a
bone mineral density calculator. These studies demonstrate
that SAM can identify potential attack paths, their impact on
ML predictions, and the resulting health hazards for patients.

2 Approach: SAM

We propose SAM, a technique for systematically conducting STPA-
Sec on AI/ML-enabled medical devices. Figure 1 provides a high-
level overview of SAM. SAM consists of four components as follows:
(1) Control structure Builder guides the user (device manufac-
turer/security analyst) in building the control structure of the ML-
enabled device under assessment, which describes the system com-
ponents, their communications, and data flow paths (details in §2.1);
(2) Technology Identifier outputs the ML technique used in the
system and all the technological and operational factors associated
with each peripheral device (§2.2);

(3) Vulnerability Finder outputs the known vulnerabilities for
each technological factor and finds out the latest reports on data
injection attacks on ML technique used by the system (§2.3);

(4) Automated Causal Scenario Generator uses an LLM with a
meticulously crafted prompt, based on information about identified
technologies, ML techniques, and known vulnerabilities, to gener-
ate causal scenarios. These scenarios outline all possible ways an
adversary can inject malicious data points into the system and the
potential impacts on patient safety (§2.4).

2.1 Control Structure Builder

To perform STPA-Sec, SAM first requires the control structure of
the system under assessment. The control structure gives an end-
to-end view of the system components, their interconnections, and
data flow paths within the system, which will be used to find the
insecure control actions that might result in system hazards and to
identify potential attack entry points and paths.

Different medical systems have different control structures, re-
quiring users to derive a new control structure for each system
when performing STPA-Sec. While manufacturers can refer to the
system design, third-party security analysts must rely on publicly
disclosed device descriptions, which are often incomplete and lack
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Figure 2: Generalized Control Structure for ML-enabled
Medical Devices

standardization, making the process time-consuming and error-
prone. To mitigate this, MITRE [15] recommends developing a
standardized method for describing components and their interac-
tions. The control structure builder offers a template to help users
easily and accurately derive any medical system’s control structure.

We incorporate a generalized control structure in SAM that
covers all necessary components and interconnections in an ML-
enabled medical system, as shown in Figure 2. It comprises six
primary elements: the Patient, Sensor, Actuator, Medical Practitioner,
Interface Device, and ML Controller. The ML Controller is either a
Software-as-Medical-Device (SaMD) installable on general-purpose
devices or a Software-in-Medical-Device (SiMD) integrated with
proprietary hardware. Methods employed for data exchange among
the different components include manual data entry and physical or
wireless technologies such as Wi-Fi, Bluetooth, or Ethernet connec-
tions. The directed edges in the figure indicate these communication
links and data flow paths. We created this generalized structure by
manually examining the descriptions of 20 FDA-cleared ML-enabled
medical devices, obtained from their FDA pre-approval summaries
and manufacturers’ websites. The security analyst can customize it
(e.g., remove or add more instances of some components) to match
the description of the system under assessment. For instance, there
is no actuator in ECG devices (e.g., the CardioLogs Platform[36])
and hence, this must be removed. Instead, treatment is done by
medical practitioners based on the controller output.

2.2 Technology Identifier

Our prior investigations [11] showed that ML techniques in medical
systems are vulnerable to false data injection attacks, and technolo-
gies used in peripheral devices often serve as potential attack points.
To enable a thorough security assessment of the technologies used
in the system, the Technology Identifier component helps the user
gather information on the ML technique used in the system and
the technologies used in the peripherals.

2.2.1 Identifying the ML technique. When using SAM, device man-
ufacturers can directly input the ML technique information. For
independent security analysts, identifying the ML technique is chal-
lenging without the manufacturer’s cooperation. In such cases, the
Technology Identifier estimates the ML technique using publicly
available information, such as FDA device descriptions and details
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Category Factors
Human e Data Entry / Supervision e Data Validation / authenti-
Interaction cation e Anomaly/failure detection

Communication |e Communication protocol and specific version

Protocol e Data encryption

Electromagnetic |e Susceptibility to electromagnetic radiation

Susceptibility o Repercussions of radiation exceeding threshold
o Presence of shielding/mitigation strategy

Dependencies | Firmware @ Hardware  OS o External libraries

Table 1: Factors considered for security assessment

from online sources such as the Medical Futurist website [32]. SAM
utilizes a Natural Language Processing (NLP) technique (distilbert-
base-uncased-distilled-squad [27]), paired with a set of targeted
questions to extract information about device functionality (e.g., CT
scan analysis), ML technique (e.g., deep learning technique), and
input data type (e.g., DICOM files) from these sources. However,
the NLP responses must be reviewed and validated manually.

2.2.2  Identifying the peripheral device technologies. We have inte-
grated two questionnaires into SAM. The first contains questions
regarding the compatibility conditions for each peripheral device
in the control structure and must be filled out by the manufacturer
of the ML-enabled device. When SAM is used by an independent
analyst, the compatibility information (e.g., compatible communi-
cation links, input device, operating system, etc.) can be inferred
from the publicly available product description. For instance, for the
glucose meter in a blood-glucose management system (BGMS), the
compatibility condition might be Bluetooth connectivity. Similarly,
certain BGMS apps might be compatible only with iOS devices.
Next, users must identify the technologies used in each compati-
ble device. For this purpose, we integrate a second questionnaire
into SAM covering a range of technological and operational fac-
tors. These questions ensure thorough coverage of potential attack
entry points in the subsequent assessment steps. We have catego-
rized the factors into four groups, namely (i) Human Interaction, (ii)
Communication Protocol, (iii) Electromagnetic Susceptibility, and (iv)
Dependencies, as outlined in Table 1. Our choice of factors is based
on known attack vectors targeting ML-enabled medical devices [42].
Note that the SAM user must manually identify all commercial
peripheral devices that meet the compatibility conditions specified
by the ML-enabled device manufacturer. To complete the second
questionnaire, the user can refer to FDA pre-market device sum-
maries [40] and publicly available information on each peripheral,
such as product descriptions on the manufacturer’s website>.

2.3 Vulnerability Finder

Next, SAM identifies all the known security vulnerabilities related
to the identified technologies using the following process.

2.3.1 Retrieval of Potential ML Attacks. The Vulnerability Finder
component of SAM identifies known ML attacks on the assessed
device by interfacing with Google Scholar to retrieve relevant peer-
reviewed articles. Because crafting effective search keywords is
challenging, SAM uses a local LLM (Llama3 on Ollama [22]) to

3The questionnaires can be found at https://bit.ly/3XRorV6
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generate precise keywords based on the device’s functionality, ML
technique, and input data. A customized web scraper then uses
these keywords to find articles on inference-time attacks targeting
similar ML techniques. We validated the results manually.

2.3.2  Retrieval of Known Vulnerabilities Using CVE Database. Once
the SAM user has answered all the questions about the technologi-
cal and operational factors in the questionnaires (see §2.2.2), SAM
uses these responses as search keywords to find known vulnera-
bilities in the MITRE Common Vulnerability Enumeration (CVE)
database [17]. By utilizing this constantly updated database, we
ensure that SAM has captured all the known vulnerabilities linked
to each technology. In the subsequent steps, SAM uses insights into
vulnerable points, relevant technologies, and known vulnerabilities
to automatically generate causal scenarios for the given hazards.

2.4 Automated Causal Scenario Generator

The most crucial step of the STPA-Sec process is identifying causal
scenarios for predefined hazards within the system [43]. Performing
this step manually makes it error-prone and time-consuming, as the
user must rely on their knowledge of security and domain expertise.
Furthermore, the process of finding a relationship between security
vulnerabilities in peripherals, attack strategy, and its impact on
the patient is complex. To address these problems, we leverage the
capabilities of LLMs to automatically identify these causal scenarios
based on the latest vulnerabilities found in the technologies used in
the system under assessment. Note that we assume the hazards and
unsafe control actions have already been identified using the STPA-
Sec process and based on the security analyst’s understanding of
the system. Automating this step is beyond the scope of this work.

A key challenge when using LLMs is crafting the right prompt
to obtain the ideal response for a given task. For SAM, an ideal
response would include a detailed set of attack steps exploiting a
peripheral vulnerability to perform inference-time data injection on
a given ML technique. For this, we developed the following prompt.

“Act as a security engineer who has the task of identifying the
steps that an adversary follows to cause a security breach in an
ML-enabled medical system. <Description of an ML-enabled medical
system>. <Definition of security breach>. You are given a system
description, an ML attack, a targeted input peripheral component,
and a known vulnerability in the input component. Give a list of
steps to show how an adversary can exploit the vulnerability to
mislead the ML-enabled component and how that affects the action
of the output device on the patient.

System Description: <The SAM user manually writes this descrip-
tion by inspecting information disclosed by the manufacturer.>
Data flow: <This can be derived from the control structure con-
structed using the Control structure builder in §2.1.>

ML attack: <The ML attack identified in §2.3>

Targeted input peripheral component: <One of the peripheral
input devices in the control structure built in §2.1>

Targeted technology: <One of the underlying technologies in the
input device, as identified by the technology identifier (§2.2)>
Known vulnerability: <Description of the known vulnerability in
the targeted technology, as retrieved from the CVE database in §2.3>
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We observed that explicitly assigning the LLM the role of a
security analyst before giving it additional information improves
the readability and relevance of the generated results - this is in
line with other work in this area [29, 14, 28]. Similarly, mentioning
the data flow provides clarity to the LLM regarding the sequence
of data transmission between different components in the system.

By running this prompt for each vulnerable point in the system
and each vulnerability uncovered at that point, SAM, regardless of
the existence of safety/security margins, generates a comprehensive
set of steps an adversary might take to compromise the security of
an ML-enabled medical device. Device manufacturers or security
analysts can then disregard those that have already been mitigated
and develop design recommendations for the remaining ones.

3 Evaluation Methodology

3.1 Experimental Setup

3.1.1 Case Studies. We applied SAM to the following two FDA-
cleared ML-enabled medical devices. We selected these mainly due
to their extensive use by a substantial number of patients.

The d-nav system [37] is an ML-enabled app by Hygieia that
prescribes insulin doses to Diabetic patients based on their past
and present blood glucose levels and other physiological data such
as meal and sleep timings. Subsequently, the patient or a caregiver
reads the recommended insulin dose and configures the insulin
pump to administer the specified amount to the patient’s body.

The ABMD system [34] is an ML-enabled image processing
software by HeartLung.Al that measures bone mineral density
from CT scans. Subsequently, it generates a report for the medical
practitioner that allows them to make treatment plans.

3.1.2  Implementation. We used Python to develop all components
of SAM, except for the Control Structure Builder. Furthermore, in
the Automated Causal Scenario Generator, we employed and eval-
uated three state-of-the-art large language models, viz., ChatGPT
4.0, ChatGPT 4o, and Llama 3. These models were selected for their
advanced natural language processing capabilities and well-known
effectiveness in generating contextually relevant outputs.

3.2 Research Questions

Our main research questions and the corresponding evaluation
metrics used to answer them are as follows:

o RQ1: How does the technology identifier facilitate the identification
of all underlying technologies within an AI/ML-enabled medical de-
vice? — In evaluating our technology identifier shown in §2.2, we
emphasize its dual benefit: accelerating the identification process
of ML techniques used in medical devices and enhancing the com-
prehensive identification of technologies across all peripheral
devices to the best of our ability.

o RQ2: How effective is the vulnerability identifier in helping security
analysts identify ML attacks and known vulnerabilities specific
to AI/ML-enabled medical devices? - We evaluate the efficiency
of the vulnerability identifier shown in §2.3 by demonstrating
its ability to identify vulnerabilities reported in the underlying
technology and their relevance to the system under assessment.
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o RQ3: How accurate, realistic, and detailed are the causal scenarios
generated by LLMs? — To evaluate the quality of the causal scenar-
ios generated by the automated causal scenario generator (§2.4),
we focus on three key aspects: (1) the correctness of the steps,
measured as the fraction of completely correct steps among those
generated, (2) the detail provided on the attacker’s capabilities
or actions, and (3) the inclusion of additional useful information,
such as potential patient impact.

4 Experimental Results

We first build the control structures of the d-Nav and ABMD systems
using the method proposed in §2.1. For identifying the number
of instances of each component in the control structure and the
presence of any additional device in the system, we referred to
the device summaries submitted by the manufacturers for the FDA
pre-market approval [37, 34] and their websites [10, 13].

Figure 3a shows the control structure of the d-Nav system. The d-
Nav app, installed on a smartphone, interfaces with an ML-enabled
back end on a cloud server. Blood glucose values are entered manu-
ally or collected from a connected glucose meter via cloud-to-cloud
integration. Based on the glucose values and other manually entered
physiological data, the ML engine recommends an insulin dose,
which is displayed on the app for the patient to adjust their insulin
pump. Communication between the ML engine and smartphone
occurs via the Internet. The directed edges indicate information
flow and user actions. Figure 3b depicts the control structure of the
ABMD system. The ML-enabled software runs on a Linux system.
The patient’s images captured by the CT scanner are transferred to
alocal PACS server via Wi-Fi, converted to DICOM format, and sent
to a gateway server for deanonymization. The deanonymized files
are then sent to the HeartLung cloud server, from where the ABMD
software retrieves and processes them. The resulting bone min-
eral density report is displayed to a medical practitioner through a
provider portal and sent to the patient’s smartphone app.
Efficiency in Technology Identification (RQ1). The answer
to RQ1 has two parts — identification of the ML technique and
the identification of technological and operational factors. While
unfortunately, for both systems (d-Nav and ABMD) the Technology
Identifier could not retrieve the exact ML technique used due to
a lack of sufficient public information, it was able to retrieve the
device functionalities and input formats. It inferred that d-Nav is a
software device that calculates the next dose of insulin based on
blood glucose data trends captured by an automated blood glucose
meter. As for the ABMD system, the Technology Identifier inferred
that it is a software module that estimates bone mineral density in
vertebral bones from input CT scans provided in DICOM format.
We manually inspected the device documentation and found that
the information that SAM retrieved matched ours, but manual
inspection took much more time (approximately two hours) and
effort as compared to that taken by SAM (a few seconds).

SAM identified six technology factors for d-Nav and nine for
ABMD that can act as potential attack points, as depicted in Table
2 based on the factors shown in Table 1.

Ability to discover vulnerabilities (RQ2). The answer to RQ2
has two parts: identification of inference-time attacks in the ML
technique and identification of vulnerabilities in the underlying
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technologies of the peripheral devices. SAM could identify at least
one highly relevant paper for both systems - a model inversion
attack [12] for the d-Nav system, and a GAN-based malicious image
tampering attack [16] for the ABMD system.

For the peripheral devices and communication protocols, SAM
successfully retrieved all relevant CVE records. For instance, in the
d-Nav system, SAM identified 593 CVE records [7] for the Wi-Fi
communication between the glucose meter and the cloud server.
For the ABMD software, SAM identified 541 CVE records [6] for
the Ethernet communication between the CT scan device and the
PACS. We observed that most of the recent CVE records for these
technologies are either pending further analysis or lack an available
workaround or patch.

The performance of LLMs (RQ3). Using the device description,
and vulnerability information extracted in the previous steps, we
crafted prompts for the LLM-based causal scenario generator using
the template shown in § 2.4. For a given system, the user should
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Device
d-Nav
system

Points of Vulnerability
o Glucose meter ® Wi-Fi communication between glucose
meter and the cloud server e the communication between
the cloud server for glucose meter and the ML controller o
Wi-Fi communication between the interface device and the
ML controller o interaction of interface with SQL database
® Android OS on the interface

ABMD |e
software

Ethernet communication between the CT Scan Device to
PACS o PACS Server o Ethernet communication between
the PACS and Gateway e Gateway  Wi-Fi communication
between the gateway and the ML controller ¢ Wi-Fi commu-{
nication between the patient’s interface device and the ML
controller « Wi-Fi communication between the provider’s
interface device and the ML controller  Linux OS on the
provider’s interface device ® Android OS on the patient’s
interface device

Table 2: Identified points of vulnerability in d-Nav and
ABMD

execute the prompt separately for every {hazard, ML attack, targeted
peripheral component, peripheral device technology, vulnerability}
tuple to get a comprehensive set of possible security attacks. We
show the results for one such tuple for each medical system.

For d-Nav, we selected hypoglycemia as the hazard, and “inject-
ing excess insulin” as the control action that causes it. We consider
an adversary who conducts a model inversion attack (identified
in the previous step) on the ML engine followed by false data in-
jection. This attack makes the ML engine mispredict the insulin
dose. To execute this attack, the adversary injects false glucose
readings into the Wi-Fi channel that transmits the patient’s glu-
cose readings from the glucose meter to the ML engine running in
the cloud server. We assume that the patient uses a Wi-Fi router
with an unpatched known vulnerability, CVE-2023-35836 [9], that
the adversary exploits for injecting the malicious glucose readings.
Figure 4 shows the response of the Llama3 LLM to the prompt.

For ABMD, we selected incorrect treatment as the hazard, and
“The medical practitioner not providing the correct diagnosis on the
potential bone cracks” as the control action that causes it. We con-
sider an adversary who conducts a GAN-based malicious image
tampering attack (identified in the previous step) on the ML en-
gine. This attack makes the ML engine mispredict the bone mineral
density. To execute this attack, the adversary tampers with the CT
images by compromising the Ethernet communication between the
CT scan device and the PACS. We assume that the patient uses an
Ethernet driver with a known vulnerability, CVE-2023-1670 8], that
the adversary exploits for tampering the CT images. Figure 5 shows
the response of GPT4o to the prompt.

In both cases, the LLMs generated steps outlining how an adver-
sary would execute the attacks. We evaluated responses as follows:

(1) Correctness: We manually validated and computed step-wise
correctness of the LLM responses and observed the following:
92% (ChatGPT 4.0), 96% (ChatGPT 40), and 90% (Llama 3) for d-
Nav, and 90% (ChatGPT 4.0), 92% (ChatGPT 40), and 84% (Llama
3) for ABMD. This demonstrates the effectiveness of different
LLMs with our proposed prompts.
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Here is the list of steps an adversary can take to exploit the known
vulnerability in the Wi-fi communication between the glucose meter
and the cloud server to launch a Model Inversion Attack on the ML-
enabled blood glucose management system:

Step 1: Reconnaissance

The adversary identifies the Wi-fi communication device used between
the glucose meter and the cloud server and recognizes the known
vulnerability.

Step 2: Exploitation

The adversary, within RF range, exploits the vulnerability to obtain
a cleartext copy of the network configuration, including the Wi-Fi
PSK, during device setup or reconfiguration.

Step 3: Wi-fi Network Infiltration

The adversary uses the obtained Wi-Fi PSK to infiltrate the target's
Wi-Fi network, gaining unauthorized access to the communication
between the glucose meter and the cloud server.

Step 4: Data Interception

The adversary intercepts the glucose level data transmitted from the
glucose meter to the cloud server, allowing them to manipulate the
data in transit.

Step 5: Data Tampering
The adversary tampers with the glucose level data, modifying it to
create a fake glucose reading that will mislead the ML controller.

Step 6: Model Inversion Attack

The adversary uses the tampered glucose level data to launch a Model
Inversion Attack on the ML controller. The goal is to invert the ML
model's behavior, causing it to predict an incorrect insulin dose
based on the fake glucose reading.

Step 7: ML Controller Manipulation
The ML controller, unaware of the tampered data, processes the fake
glucose reading and predicts an incorrect insulin dose.

Step 8: Output Device Manipulation

The incorrect insulin dose is sent to the interface device (mobile
phone), which displays the faulty prediction to the patient or
caregiver.

Step 9: Insulin Pump Misadministration

The patient or caregiver, trusting the ML controller's prediction,
sets up the insulin pump to administer the incorrect insulin dose,
potentially leading to hypoglycemic or hyperglycemic events.

By exploiting the vulnerability in the Wi-fi communication, the
adversary can manipulate the glucose level data, mislead the ML
controller, and ultimately cause the insulin pump to administer an
incorrect dose, compromising the patient's safety and well-being.

Figure 4: Generated causal scenario using Llama 3 for the
Wi-Fi communication in d-Nav system

(2) Level of Detail: In both case studies, ChatGPT 4o provided
more detailed steps compared to the other models. For most
points of vulnerability, it clearly defined the objective of each
step and the required actions to be taken. Llama 3 provided
more details than ChatGPT 4.0 in some instances.

Additional Information: In both cases, we found that Chat-
GPT 4.0 excelled in detailing attacks’ impact on Confidentiality,
Integrity, and Availability, and recommending mitigation strate-
gies. It also summarized steps to exploit vulnerabilities. Llama 3
and ChatGPT 4.0 followed closely behind in terms of providing
information on the impact of vulnerabilities on patients.

©)

5 Related Work

There have been several tools that facilitate conducting STPA and
STPA-Sec in different application domains. To determine their suit-
ability for STPA-Sec on ML-enabled medical systems, we focus on
three main features of the tools — whether they address security
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### Adversary Steps to Exploit the Vulnerability and Mislead the ML-
Enabled Component

#### 1. Reconnaissance and Target Discovery

- *kAction**: The adversary performs reconnaissance to gather
information about the system architecture and identify all connected
devices and communication channels.

- **Objective**: Determine the points of interest, particularly the
Ethernet communication pathway from the CT Scan Device to PACS.

#### 2. Vulnerability Exploration

- **Action**: The adversary uses available tools and techniques to
discover and understand the known vulnerability in the Linux kernel
Xircom 16-bit PCMCIA Ethernet driver.

- **Objective**: Esteem how to exploit the "use after free" flaw for
either crashing the system or escalating privileges.

#### 3. Exploitation of Ethernet Communication Vulnerability

- *kAction**: Using the understanding of the flaw, the adversary
exploits the vulnerability to gain unauthorized access or control
over the Ethernet communication.

- **Objective**: Intercept and manipulate the data packets sent from
the CT Scan Device to PACS.

#### 4. Injection of Malicious Payload

- *kAction**: The adversary leverages the privilege escalation or
gained control to inject a Conditional GAN (Generative Adversarial
Network)-based payload into the data stream.

- **Objective**: Tamper with the 3D medical images being transmitted.
Modify the imagery to induce miscalculations in the subsequent BMD,
Z-score, and T-scores.

#### 5. Image Tampering

- **Action**: The adversary's injected payload alters key sections of
the CT Scan images. This manipulation changes the Hounsfield unit
values and potentially removes or adds features to mislead the ML
model.

- **Objective**: Ensure the ML model receives corrupted or misleading
data, leading it to process and segment vertebral bones inaccurately
and calculate incorrect density measurements.

#### 6. Propagation of Compromised Data

- *kAction**: The tampered images pass through the PACS, the gateway,
and the interface (PC or Tablet) before reaching the ML-controller
(cloud).

- **Objective**: Ensure the continued integrity of the tampered data
as it reaches the ML component for analysis.

#### 7. Misleading the ML Component

- *kAction**: The ML model processes the tampered images and extracts
and segments the incorrect features, calculating misleading BMD, Z-
scores, and T-scores based on altered HU values.

- **Objective**: Produce and export incorrect diagnostic results,
including snapshots and calculated scores.

#i### 8. Delivery of False Results

- *kAction**: The final, tampered data, including erroneous BMD
calculations and incorrect diagnostic scores, are delivered to the
interface (PC or Tablet) for review by the medical practitioner.

- **Objective**: Ensure that the medical practitioner receives
incorrect diagnostic information.

#### 9. Practitioner Makes Incorrect Decision

- *kAction**: The medical practitioner, trusting the system's output,
reviews the tampered images and incorrect scores, making diagnostic
or treatment decisions based on the compromised data.

- **Objective**: Influence the medical practitioner's actions,
potentially leading to misdiagnosis or inappropriate treatment for
the patient.

#### 10. Impact on Patient

- *kAction**: The patient receives diagnosis and treatment based on
the corrupted data from the ML-enabled system.

- **Objective**: Cause harm, whether through incorrect treatments,
unnecessary interventions, or delayed proper care.

### Recommendations

- **Vulnerability Mitigation**: Patch or update the Linux kernel to
resolve the "use after free" flaw in the Xircom 16-bit PCMCIA
Ethernet driver.

- **Data Integrity Verification**: Implement strong encryption and
integrity checks in the Ethernet communication to detect tampering.
- **Enhanced Security Monitoring**: Monitor and log any anomalies in
data transmission and device communications.

- **AI Model Robustness**: Strengthen the ML model to detect and
handle potential adversarial inputs.

Figure 5: Generated causal scenario using ChatGPT 4o for
the Ethernet communication in ABMD software
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A ion Level
Name Focus Application Domain ( C‘.l:lcl‘:;fts‘cox:na:i\;es)
A-STPA
XSTAMPP Safety General Purpose [ )
SafetyHAT Safety Transportation [ D)
. Healthcare, Transportation,
WebSTAMP |Safety/Security| Chemical Industry ()
SOT Safety/Security Aircraft Systems [ D)
SAM .
Our Tool Security Healthcare [ )

Table 3: Summary of State-of-the-Art STPA/STPA-Sec tools
( Q. Fully-automated, © : Semi-automated, O': Manual)

attacks on ML-enabled systems, whether they apply to the medical
domain, and whether they automate the process of causal scenario
generation.

To this end, we compare SAM with four state-of-the-art STPA/STPA-
Sec tools: (1) A-STPA [1] and its enhanced version, XSTAMPP [2]
— These tools help a user link unsafe control actions to identified
safety hazards and provide graphical aids for control structure cre-
ation, but require manual identification of causal scenarios.; (2)
SafetyHAT [4] — Customized for the transportation sector, this
tool offers a graphical interface, data management capabilities, and
transportation-specific guidewords for identifying unsafe control
actions and causal scenarios, but still requires manual identification
of comprehensive causal scenarios; (3) WebSTAMP [30] - It is a
web application designed for STPA and STPA-Sec, that aims to
provide a structured, automated, and comprehensive analysis. The
tool offers a list of comprehensive control actions and guiding ques-
tions that help the user identify hazardous control actions and their
causal scenarios. It has been demonstrated on a Glucose Monitoring
and Insulin Pumping System, transportation applications[33], and
chemical reactors[44]; and, (4) SOT [23] - This tool helps systems
engineers conduct safety and security analyses by using stored
knowledge from previous analyses to identify causal scenarios.

Table 3 shows a summary of these tools. A-STPA, XSTAMPP,
and SafetyHAT focus only on safety concerns caused by device
failures, not malicious data injection attacks. WebSTAMP and SOT
address security concerns but rely heavily on users’ knowledge of
security vulnerabilities and manual effort. In contrast, SAM helps
in gathering information on the latest security vulnerabilities from
state-of-the-art databases, uses LLMs, and incorporates adversarial
attack and medical domain knowledge, providing a comprehensive
list of potential security risks for the system under assessment.

Recent papers such as the survey by Qi et al. [25] explore the
use of STPA in learning-enabled systems, and introduce DeepSTPA
for analyzing ML lifecycle failures, which is beyond our scope.
Other recent papers [26, 20, 21] explore the usability of LLMs in
STPA, highlighting the need for human intervention in generating
prompts and validating LLM responses. However, they do not focus
on medical device security, which is our focus.

6 Conclusion

This paper introduces SAM, a technique designed to assist in sys-
tematically performing STPA-Sec on ML-enabled medical devices.
By identifying vulnerabilities in peripheral devices, SAM leverages
the capabilities of LLMs to automate the identification of potential
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false data injection paths. We evaluated SAM using two case stud-
ies: a blood glucose management system and bone mineral density
measurement software. The results demonstrated SAM’s effective-
ness in automatically identifying a comprehensive list of potential
attack paths and their subsequent health impact on patients. With
SAM, both device manufacturers and security analysts can identify
security risks in ML-enabled medical devices at early stages.

In the future, we will explore simultaneous data injections at
multiple vulnerable points, additional types of ML attacks, and
develop mechanisms to summarize and automatically verify the
outcomes generated by LLMs.
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