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Abstract—Distributed Internet-of-Things (IoT) applications
operate in a dynamic environment, and therefore need to adapt in
response to unexpected failures and changes in the operating con-
ditions. Making IoT applications adaptive is challenging due to
two reasons. First, an IoT application comprises multiple service
components, each with a different performance and dependability
requirement. Second, an application can be deployed in vastly
different runtime infrastructures, each varying in the availability
of resources, and sources of faults. Hence, an adaptivity solution
must be both application-aware and infrastructure-agnostic.

In this paper, we present a middleware system called Immuno-
Plane that transparently provides adaptivity to IoT applications.
ImmunoPlane provides a domain-specific language for users
to declaratively state application-specific requirements, and it
produces an adaptive deployment plan based on the given
infrastructure and the user-provided application requirements.
We show that ImmunoPlane can satisfy application requirements
such as availability, throughput, and latency, under both failures
and network congestion, in three different infrastructures.

Index Terms—Internet of Things, Adaptive systems, Middle-
ware, Failure Tolerance, Domain-specific Language

[. INTRODUCTION

Distributed Internet-of-Things (IoT) applications operate
in a dynamic environment where unpredictable events such
as device failures, network outages, and abrupt spikes in
resource consumption can degrade their performance and
correctness [1]. Making IoT applications adaptive to such dy-
namic operating conditions while satisfying user requirements,
is critical to ensuring their utility. In this work, we focus on
two important adaptivity goals for distributed IoT applications
— performance management (coping with fluctuations in re-
sources), and fault tolerance (coping with failures).

Ensuring adaptivity in IoT applications is challenging due
to two reasons. First, IoT applications can have different
performance and dependability requirements. Second, an IoT
application can be deployed in different runtime infrastructures
[2]. For example, consider a “Home Security” application used
for surveillance of residences or storefronts (§II). This is a
video analytics application that includes a real-time processing
pipeline for live object detection and end-user notification, and
a batch processing pipeline for video encoding and storage.
This application has different local requirements (i.e., perfor-
mance and dependability requirements) for each processing
pipeline. For the live object detection task, it must deliver low
end-to-end latency and high availability. For the video storage
task, it must preserve the integrity of the stored footage.

To satisfy the above requirements, we must determine the
appropriate deployment plan, which involves the placement
of service components, and the feedback control loop mech-
anisms (i.e., monitoring and invoking adaptive actions) for
coping with failures and resource fluctuations. For each given
infrastructure, we need to adjust the deployment plan based
on the available resources and the location of faults that can
occur in that infrastructure. This is the focus of our work.

Existing systems that potentially provide adaptivity in the
IoT domain have two limitations. They either assume a global
requirement across all service components (thus lacking in
application-awareness), or require the user to manually set up
the monitoring and adaptation mechanisms (thus lacking in
infrastructure-independence). For example, stream processing
frameworks (SPFs) such as Apache Flink [3] and Spark [4]
provide failure recovery and dynamic scaling. Both frame-
works, however, target a specific class of applications, and do
not support fine-tuning for local requirements, which is needed
for IoT applications such as our Home Security example.
On the other hand, coordination systems such as CHARIOT
[5] and PCL (Program Control Language) [6] allow users
to customize the deployment plan through imperative APISs,
which explicitly tells the system to monitor a specific resource
in a given infrastructure, and update/replicate a specific com-
ponent. However, due to the imperative design, the user must
write a different deployment plan for each new infrastructure.

Our goal is to design an adaptivity solution that works
across different IoT infrastructures with minimal user effort,
while also providing a user the ability to customize the solution
for each target application. To this end, we present a middle-
ware system called ImmunoPlane that provides adaptivity to
IoT applications in an infrastructure-agnostic manner.

ImmunoPlane has two innovations to achieve its goal. First,
ImmunoPlane provides a domain-specific language (DSL) for
a user to declare component-specific requirements, allowing
the middleware to be application-aware. Second, Immuno-
Plane implements an algorithm that produces a concrete
adaptive deployment plan based on these requirements, while
taking into account the resource characteristics of the target
infrastructure. 7o the best of our knowledge, ImmunoPlane is
the first IoT middleware to provide adaptivity while achieving
both application-awareness and infrastructure-independence,
and requiring minimal user effort.
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Contributions. Our work makes the following contributions.
o« We propose a DSL that enables developers to express
application-level performance and dependability require-
ments in a declarative fashion (§IV-B). This DSL allows
users to declare component-specific local requirements
without specifying the adaptation conditions and actions.

o We develop an algorithm to compute a concrete adap-
tive deployment plan, consisting of the placement of
service components and a set of specialized adaptation
components (§IV-C). Based on user-provided application
requirements (expressed in the DSL), our algorithm con-
structs an application-specific search heuristic, which is
then used to efficiently guide the search for a placement
that satisfies the custom user requirements.

o We implement ImmunoPlane, a distributed middleware
that delivers the deployment plan produced by the above
procedure. [mmunoPlane is built on our prior work,
OneOS [7], and has been publicly released '.

o We evaluated ImmunoPlane across 14 different bench-
mark applications, taken from four papers (Yahoo Stream-
ing Benchmark [8], RIoTBench [9], DSPBench [10],
and ThingsJS [11]). We find that ImmunoPlane delivers
three-nines (99.9%) availability (conservatively assuming
a device failure every 28 minutes), maintains similar 99th
percentile latency as Flink at 15,000 events/sec under
congestion in a single route, and recovers from device
failures within 2 seconds, on par with existing SPFs (§V).
ImmunoPlane transparently provides adaptivity in three
different infrastructures, with minimal user effort.

II. MOTIVATING EXAMPLE

We highlight the design complexities encountered by a
user while developing an adaptive 10T application with an
example of a Home Security application from prior work [7].
We use this application as a running example in this paper
to describe how our proposed solution, ImmunoPlane, helps a
user address these design challenges. The application setup
that we describe is a simplified representation of popular
video analytics applications such as those built on Microsoft
Rocket [12]. The application has three high-level objectives:
(D analyze a live video stream from a camera to detect events
of interest — e.g., “a person moving” — and notify the end-user,
(2) store the video stream on persistent storage, and (3) provide
a live feed of the video stream for viewing by the end-user. We
assume that the application is written in JavaScript (Node.js).

The Home Security application comprises a set of commu-
nicating services that can be distributed over the edge and
the cloud. Each of these services, or application components,
consumes data from an upstream component, processes the
data and then passes it on to a downstream component.
The application can be expressed as a directed acyclic graph
(DAG), as shown in Fig. 1. The nodes in the DAG represent
the components, while the directed edges represent the flow
of data from one component to another.

I Available  at:
ImmunoPlane

https://github.com/DependableSystemsLab/OneOS/tree/
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Fig. 1: Dataflow diagram representing the “Home Security” applica-
tion example. Each node represents an individual service component,
and edges represent the data flow from one service to another.

We briefly describe the individual components below:

o Streamer reads the input from a physical video device
(e.g., a camera) and publishes the video frames in real
time to three other components via three edges.

o Detector reads the frames from Streamer, performs
image recognition tasks, and publishes messages about
events of interest (e.g., “a person moving”).

o Notifier is a messaging service that receives event data
from the Detector, and sends a message to the end-user
if any changes are detected.

e Recorder reads the frames from Streamer, and stores
the frames as one-minute long video files on a disk.

o Viewer is a web service that reads the video frames from
Streamer, and provides a live feed through the web.

Component-specific Local Requirements. In the Home
Security application, the processing pipelines along different
edges have different performance and dependability require-
ments, depending on the purpose and the processing pattern of
each component. Streamer continuously sends video frames
in real time to Detector (along edge El), as long as the
video device is on. Detector and Notifier (along edges
El and E4) are continuous stream-processing services, and
are expected to be highly available and have low latency
as they serve a critical functionality in real-time (i.e., (1)
“secure the premises”). On the other hand, the Recorder
is a batch-processing service that saves a video file after
every l-minute worth of video frames are buffered. For the
Recorder, integrity is more important than availability, i.e.,
it is acceptable for the Recorder to not operate continuously,
but it is not acceptable to lose the video frames it processes
(as they may be security critical). Finally, the Viewer is a web
server, and has neither availability nor integrity requirements.

As shown in our example, an IoT application contains
multiple processing pipelines and each has its own local
requirement. This is in contrast to stream-processing or parallel
computing applications, which have end-to-end uniform global
requirements over the entire processing pipeline. An IoT solu-
tion must, therefore, take into account the various component-
specific performance and dependability requirements when it
provides adaptivity to a given application.

Support for Diverse Runtime Infrastructures. Typically,
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an application like the Home Security application would
be deployed in different deployment environments such as
residences, storefronts, or offices. For each environment, we
need a different adaptive deployment plan, because the runtime
infrastructure (i.e., the availability and connectivity of compute
resources) is much more diverse in IoT environments than
in cloud or enterprise environments. By adaptive deployment
plan, we mean the appropriate placement of components and
the dynamic application of adaptive actions. For each given
infrastructure, the application components must be distributed
strategically to deliver the performance required, and different
adaptive actions might be required depending on the sources
of fault present. For example, component migration might be
used to deal with battery draining to low levels, and component
parallelization might be used to deal with network congestion.

For example, consider two different infrastructures (Fig. 2).
Infrastructure A has three edge devices and a cloud server.
Edge Device 1 and 2 are configured to host three components,
Streamer, Detector, and Recorder. Edge Device 3 is con-
figured to provide redundancy for Detector and Recorder,
so that in case Edge Device 2 fails, it transparently takes over
to ensure that Detector is available. Streamer sends the
video frames to both replicas of Recorder running on Edge
Devices 2 and 3, to ensure the integrity of the recordings
through redundant copies. Notifier and Viewer are hosted
on Cloud Device 1 without any redundancies, relying instead
on the reliability guarantees provided by the cloud.

However, this particular deployment plan does not transfer
directly to Infrastructure B, which has a single edge device
and three cloud devices. In Infrastructure B, since there is no
redundant edge device, Edge Device 1 hosts both Streamer
and Detector to avoid streaming video to the cloud. There-
fore, to satisfy the availability and integrity requirements of the
Notifier and Recorder components, the cloud devices are
inevitably used. To meet latency requirements while sending
data over the edge-cloud link, a cloud-based message broker is
used to avoid creating multiple edge-cloud device connections.

The differences between runtime infrastructures require
significant changes to the deployment plan, which can be
quite cumbersome. Therefore, an adaptivity solution for IoT
applications must allow users to be infrastructure-agnostic, and
not ask them to develop a new plan for each new infrastructure.

III. CHALLENGES

What makes it difficult to build an adaptivity solution
for IoT applications that is both infrastructure-agnostic and
application-aware? There are two broad challenges: (1) the
diversity of application architectures, and (2) the heterogeneity
of the IoT environment. We detail them below.

A. IoT Application Diversity

IoT applications are very weakly classified, likely because
the scope of the IoT is quite broad and general. This is
in contrast to well-defined paradigms such as stream pro-
cessing” [13] or “serverless computing” [14]. There is an
extremely diverse set of IoT applications, ranging from smart
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Fig. 2: Different deployment plans employed in two different in-
frastructures A and B for the same “Home Security” application.
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farms, content-delivery systems, to federated learning sys-
tems [15]. The range of applications precludes well-defined
systems architecture, and hence we can make few assumptions.

This diversity in application architecture makes it difficult
to develop a general adaptation solution, because (1) an
adaptation technique that works for one application may not
work well for another, and (2) different applications have
different performance and reliability requirements. We outline
below the specific challenges we face in this regard.

¢ (C1) User Requirements. Different IoT applications
have different requirements. Real-time video analytics
applications might prioritize availability at the cost of
detection accuracy [16], whereas ETL (extract-transform-
load) applications might prioritize throughput and in-
tegrity over latency and availability. Thus, not only do
applications have different requirements, the metrics that
applications prioritize can be different from each another.

o (C2) Dataflow Topologies. There is no standard way
to organize the computation pipeline of an IoT appli-
cation. Our “Home Security” example contains three
concurrent and independent pipelines, map-reduce ap-
plications contain parallel and synchronized pipelines,
and event-processing applications contain concurrent and
asynchronous pipelines. Without knowing what parts can
be parallelized or what parts need to be synchronized, it
is difficult to adapt for performance.

o (C3) Data Types IoT applications handle various types
of data, ranging from tuples, JSON dictionaries, video
segments, to raw byte arrays. Knowing a priori what type
of data an application processes is necessary for applying
adaptation techniques over the data stream. For example,
we need to know a priori how to index a message to
dynamically partition the stream for parallel processing.

o (C4) Statefulness. IoT applications can be stateful or
stateless. In the case of stateful applications, the state can
be centralized or distributed. The adaptation technique we
can employ depends on the above. For example, we can
easily scale a stateless application component horizon-
tally by running multiple instances. However, we cannot
do the same for a stateful application component, unless
we synchronize the state across the replica components.
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B. IoT Environment Heterogeneity

The IoT ecosystem encompasses various types of devices,
each serving a different purpose, connected at different parts
of the global network. Thus, the availability of physical
resources such as processor, memory, and disk, as well as the
network connectivity greatly varies across the devices [17]. As
multiple resource and connectivity constraints need to be taken
into account for different components, it becomes difficult to
determine the optimal placement of computations (CS5). For
example, adding redundant components in a homogeneous
network is straightforward, as they would run similarly across
all the devices. In a heterogeneous network, however, we need
to determine whether the redundant components would deliver
the same level of performance, given that the host device has
different hardware and connectivity. We have to tackle the
additional complexity that arises from heterogeneity.

IV. APPROACH

We design and implement ImmunoPlane, a distributed mid-
dleware system that provides adaptivity to various classes
of IoT applications, without requiring the user to make
infrastructure-specific choices such as component configura-
tion and placement. ImmunoPlane is a middleware between
the application and the runtime infrastructure, and effectively
provides an abstract adaptivity layer in which the configuration
and placement decisions are made transparently.

A. System Overview

We first provide an overview of ImmunoPlane by describing
the workflow from the perspective of a user. Let us assume that
the user wants to deploy an IoT application such as the Home
Security application. To gain adaptivity via ImmunoPlane,
the user first describes the logical dataflow topology of the
application as a DAG using the ImmunoPlane DSL. A node
is used to define a service component, and an edge is used
to express the communication link between two components.
Then, for each of the nodes and edges in the DAG, the
user declares requirements such as high service availability
or minimum link throughput using policy directives.

Figure 3 shows the description of the Home Security
application written in the ImmunoPlane DSL. Through various
constructs (discussed in §1V-B), the ImmunoPlane DSL allows
users to characterize the features of an application, so that
it can provide an adaptation mechanism tailored for that
application. Thus, we address the challenges C1 - C4 (§I1I-A).

To deploy the application, the user submits the DAG and
the set of requirements to the ImmunoPlane Scheduler. The
Scheduler is a separate component that has full visibility of the
compute and network resources available on the ImmunoPlane
Workers running on each of the devices in the network. We
propose a novel placement algorithm in the Scheduler that
takes into account the user requirements and the characteristics
of the runtime infrastructure, thus addressing the challenge C5
in §III-B. Based on the user-provided requirements and the
currently available resources, the Scheduler computes a con-
crete adaptive deployment plan, consisting of the placement
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1 graph HomeSecurity (camera, outfile, clientEmail) {

2 node streamer: process('node", "streamer.js " + camera);

3 node detector: process('node", "detector.js", { outFormat: "
json" });

4 node recorder: process('node", "recorder.js " + outfile);

5 node viewer: process("node", "viewer.js");

6 node notifier: process("'node", "notifier.js " + clientEmail,
{ inFormat: "json" });

7

8 edge el: streamer -> detector;

9 edge e2: streamer -> recorder;

10 edge e3: streamer -> viewer;

11 edge e4: detector -> notifier;

12 }

13

14 policy BasicPolicy () for HomeSecurity {

15 place (#camera || #webcam) streamer;

16 always () detector;

17 save (30) recorder;

18 min_rate (2.5) el, e2, e3;

19 3}

Fig. 3: The Home Security example application and its application-
level requirements written as a graph and policy respectively, using
the ImmunoPlane DSL

of nodes and the necessary feedback control mechanisms for
adapting to changing conditions. Each Worker runs the nodes
assigned to it and the corresponding adaptation mechanisms.

B. Domain-specific Language

As mentioned above, the two main constructs in our DSL
are: (1) a dataflow graph for describing the logical dataflow
topology of the application, and (2) a policy containing the
performance and dependability requirements for each node
and edge in the graph. We focus our discussion mainly on (2)
in this section, as our graph construct is based on a generic
DAG used in many other flow-based programming systems
such as Node-RED [18], Apache NiFi [19], and OneOS [7].

Dataflow Graph. We have added two features in our DAG
construct. The first is typed edges for indicating the type of
message exchanged between two nodes. The message type
information enables ImmunoPlane to correctly slice the mes-
sage segments at the binary level in the network buffer. This
further allows ImmunoPlane to dynamically route messages
over parallel streams, and to sequence the messages coming
from concurrent streams. The second feature is the support for
parallel (split/merge) edges for indicating whether a dataflow
can be safely parallelized without synchronizing the states.
The Scheduler leverages this information to further tailor the
adaptivity mechanism for the given application.

Policy Directives. A user provides a policy that accom-
panies a graph. In the policy, a user can declare various
requirements for each node and edge in the graph using a set
of policy directives. InmunoPlane currently supports five types
of directives, which we describe below. We found that these
directives were sufficient for satisfying the requirements of
the benchmark applications we used (§V); however, additional
directives can easily be supported, if needed.

« always x, Yy, z — indicates that components X,
y, and z must be highly available. While achieving
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100% availability is extremely difficult, ImmunoPlane
maximizes availability on a best-effort basis.

e« min_rate|max_rate (c) p, q, r — indicates
the minimum/maximum data transfer rate required for
edges p, g, and r is ¢ MB/s (alternatively, ¢ can be
provided in terms of messages/s using mps(c))

e order_by (c) p, q, r — used to indicate the
message order for merge edges (-*> in our DSL), if the
downstream components expect to receive messages in a
particular order. ¢ can be an anonymous function invoked
for each message to return a custom index value.

e Save (c) x, vy, z — indicates that the state of
the components X, y, and z must be persistent and
recoverable at least up to ¢ seconds prior to a failure.

e place (c) x, vy, z — used when a node has
a hard placement constraint, evaluated by the boolean
function c, e.g., it needs to be placed on a specific device.

Note that all the directives are declarative, namely they
are used to state a requirement, rather than imperatively
describing how to achieve the requirement. Further, none of
the directives require any infrastructure-specific knowledge.
We discuss how each directive influences the Scheduler’s
placement and configuration decisions in the next section.

C. Middleware Architecture

The ImmunoPlane middleware system consists of a Sched-
uler and a set of Workers (§IV-A) organized in the conven-
tional manager-worker architecture. The Scheduler, working
as the manager, is responsible for producing the adaptive
deployment plan, and each Worker is responsible for executing
the part of the plan for which it is responsible. The Worker
manages the local components it hosts, and is able to pause,
resume, and checkpoint a running component. It periodically
reports its local resource usage (CPU, memory, and disk) to
the Scheduler. Since the Worker’s role is straightforward, we
focus on the Scheduler’s operation.

The Scheduler’s decision making involves two stages: (1)
graph configuration stage in which the given dataflow topol-
ogy is modified and instantiated, and (2) component placement
stage in which the node instances are assigned to the Workers.
At the end of the procedure (shown in Algorithm 1, the
Scheduler produces an adaptive deployment plan, which is
basically a concrete placement of node instances, plus a set of
special adaptation nodes that implement the feedback control
loop for adaptation. The user-provided policy directives are
used in both the stages for different purposes.

Graph Configuration Stage. During this stage, the abstract
dataflow graph is instantiated — similar to a class being in-
stantiated in a program — by enumerating the actual processes
to be spawned for each of the nodes. For example, there might
be a single node in the graph, which can be instantiated
as multiple replica processes, if the Scheduler decides to
parallelize the node. We shall refer to such processes as node
instances to differentiate them from the abstract nodes.

Based on the policy directives, the Scheduler modifies the
graph by adding special adaptation nodes to implement the

17

Before After
A B c s /s c

&0

Watcher B,

Standby

always B
" y

min_rate (X) ab

Q=S

. min_rate (X) ab

max_rate (X) ab

OO
A B C

order_by (X) bc

Legend O Regular Node

@ Parallelizable Node

Adaptation Node

— Regular Edge
» Standby Edge

— Control Plane Edge

Fig. 4: Three types of adaptation nodes added to the dataflow graph
based on the user-provided policy directives.

appropriate adaptation mechanism. We discuss three different
modifications, shown in Figure 4:

1) Standby and Watch. (Top row in Fig.4) For implement-
ing a failover mechanism for a given primary node
instance, a secondary standby node instance and a
special watcher node (an adaptation node) is injected
into the graph. The watcher monitors the liveness of
the primary instance through a heartbeat mechanism,
and activates the standby instance if the primary instance
fails. This mechanism is employed when a node requires
high availability (indicated by the always directive), or
when a node requires a minimum input rate (indicated
by the min_rate directive) but is not parallelizable.

2) Load balancer. (Middle row in Fig.4) For managing the
data transfer rate along a parallel edge, a load-balancer
node (an adaptation node) is injected between the source
and the sink nodes to maintain the required transfer
rate (indicated by either the min_rate or max_rate
directive). It dynamically routes the messages from the
source to different sinks based on the backpressure
observed at the outgoing links to the sinks.

Sequencer. (Bottom row in Fig.4) In some cases, a

node that receives messages from multiple sources must

receive them in a specific order (e.g., a component
calculating running average over a time series data). The

Scheduler injects a sequencer node (an adaptation node)

right before the node that requires orderly data. While

this node does not implement an adaptation mechanism
on its own, it is a necessary component for ensuring the
correctness of the application.

3)
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Aside from the modifications done at the graph level, the
Scheduler also configures individual nodes and edges. For
example, the Scheduler defines a checkpointing interval for
a node if a save directive is used to indicate that its state
should be persistent. Based on this node configuration, the
Worker hosting this node periodically creates checkpoints.

Component Placement Stage. After a graph is instantiated
and there are concrete node instances to be spawned, the
Scheduler needs to determine the placement of the node
instances on different Workers, such that all the user require-
ments can be satisfied. This placement problem is basically a
type of vector bin packing problem [20], which is NP-hard.
However, the Scheduler only aims to find one viable solution
(not the optimal solution), and does not need to search the
entire solution space. We use traditional search optimization
techniques such as branch pruning and prioritization.

Given this problem formulation, we chose a baseline place-
ment policy of ranked round-robin placement, in which we try
to minimize co-tenancy of components rather than minimize
the number of Workers used. By ranked, we mean that the
round-robin placement prioritizes devices with more resources.
The baseline policy is used if no policy directives are provided
(i.e., the user does not specify any requirements). We chose a
baseline policy of minimal co-tenancy as previous work [21],
[22] has found that co-tenancy degrades overall performance.

The user-provided policy directives produce a custom
heuristic used to guide the search process into different
paths from where the baseline policy would have traversed,
prioritizing paths that lead to solutions that satisfy all the
given user requirements. For example, if there is a min_rate
directive defined over the edge between nodes A and B, and
assuming that A is assigned to Worker X, the Scheduler will
override its aversion for co-tenancy and thus prioritize Worker
X when placing node B. Such Worker selection priority is cap-
tured by a node-specific score function scorepoqe(worker)
constructed from the policy directives. Unlike global search
heuristics, our heuristics based on policy directives are local-
ized to single search steps. Thus, the Scheduler is application-
aware, as it derives a separate score function for each node,
and applies a localized heuristic at each step of the search.

Algorithm 1 shows the pseudo-code for how the Sched-
uler constructs the score functions and searches for a place-
ment. The main feature of this algorithm is in “flattening”
the various node-specific requirements into a node-specific
score function. As we iterate over each policy directive, we
create a new score function for each node by combining
the existing score function with the partial, directive-specific
score function. The flattened score function simultaneously
captures both constraints and preferences for a Worker, and is
used both to eliminate requirement-violating Workers (branch
pruning) and to favor requirement-optimizing Workers (branch
prioritization) when selecting a Worker to place the node.

The algorithm works as follows. We search for a valid
placement of node instances through an exhaustive depth-first
search, using the score functions to guide the search. We start
by looking for a Worker to place the most upstream node in
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1 function PlaceApp(graph: Graph, policy: Policy) :
Map<Node,Worker>

NodeList < TopologicalSort(graph.nodes)
ScoreFunctions <— Map<Node, Func<Worker,float»
foreach declaration in policy.directives["place"] do
scoreFunc <—(worker: Worker) = (

‘ declaration.predicate(worker) 7 1 : 0
)
foreach operand in declaration do

prevFunction < ScoreFunctions[operand]

10 ScoreFunctions[operand] <—(worker: Worker) = (
1 \ prevFunction(worker) x scoreFunc(worker)
12 )

e ® N B W

13 end

14 end

15 /* repeat similar steps for all other directives */

16 Assignment <— Map<Node, Worker>

17 found < FindAssignment(NodeList, Assignment)

18 if /found then

19 | throw PlacementError

end

21 return Assignment

22 end

23 function FindAssignment(nodes: List<Node>, assign:

Map<Node,Worker>) : bool

if nodes.length == 0 then

| return rrue

end

27 scoreFunc < ScoreFunctions[nodes[0]]

eligibleWorkers <— Workers.sort(scoreFunc)

foreach selected in eligibleWorkers do
assign[nodes[0]] < selected

31 found < FindAssignment(nodes[1:], assign)
32 if found then

33 | return rrue

34 end

35 assign.remove(nodes[0])

36 end

37 return false

38 end

Algorithm 1: Placement Algorithm

the graph. We rank the Workers by using the score function,
filtering out ineligible Workers whose score is zero (lines 27
- 28). We place the node instance on the highest ranking
Worker, then move on to the next node instance (lines 30 - 31).
We repeat the same process, ranking the eligible Workers and
placing the node instance on the highest scoring Worker (lines
23 - 31, via recursion). If no eligible Worker is found (i.e., all
the Workers have a score of zero), we backtrack to the previous
node instance, and then place it on the next highest ranking
Worker (lines 32 - 35). Though we perform an exhaustive
search, the search is fast in practice due to our heuristics.
We walk through the pseudocode using our Home Security
application example (Fig. 3). At the beginning of the search,
we create five score functions score,, o(worker), one for each
node x. Initially, the score function returns a score based on
the baseline policy. Then, for the place directive applied
for the streamer node, a partial function fs(worker) is
created for the streamer node, which returns either 1 or O
based on whether the given worker has a camera (lines 5 -
7). A new score function (scoreg (worker)) is created for
streamer, which is scores o(worker) = fs(worker) (lines 9
- 12). Next, for the min_rate directive, the score functions
of both the source and sink nodes of the edges el, e2, and
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hmarks Adap Used | Eval Criteria
Standby and watch | Mean Time To Recover

Requirement | B
Availability Home Security [11]
YSB [8]
DSP-FraudDetection
DSP-TrafficMonitoring
DSP-AdsAnalytics
DSP-ClickAnalytics
DSP-SmartGrid
DSP-SpikeDetection [10]
DSP-LogProcessing
DSP-WordCount [10]
RIoT-ETL

RIoT-STATS
RIoT-TRAIN
RIoT-PRED [9]

Load balancer,
Sequencer

Processing

Latency Percentile Latency

Load balancer,

Throughput Standby and watch

Mean Throughput

TABLE I: Applications used for evaluation. The last column shows
the evaluation criteria used for each application.

e3 are updated in a similar manner. For example, for edge
el connecting streamer and detector, two partial func-
tions gs(worker) and gq(worker) are created, for streamer
and detector respectively. g, returns a score based on the
available bandwidth of all the outgoing links, such that a
worker with the most egress bandwidth receives the highest
score. gq(worker) also returns a score, but based on the
available ingress bandwidth. The partial functions are then
multiplied by the existing score functions for streamer and
detector, producing scores > and scoreq,; respectively. Af-
ter processing all policy directives, each node has an associated
score function score, (worker), which is used to evaluate the
“goodness” of a Worker for placing the given node.

D. Implementation

We implemented the ImmunoPlane Scheduler and integrated
it into OneOS [7], an IoT platform we developed in our prior
work. The implementation uses C# and the .NET 2.0 standard.

V. EVALUATION

We evaluate ImmunoPlane in two parts. First, we evaluate
whether ImmunoPlane is able to provide adaptivity to different
types of applications, and for different user requirements
(i.e., application-awareness). Second, we evaluate whether
ImmunoPlane can provide adaptivity under different deploy-
ment infrastructures, without requiring any programming or
configuration effort (i.e., infrastructure-independence).

A. Part 1: Support for Different Requirements

Evaluation Strategy. We investigate ImmunoPlane’s ability
to provide adaptivity to different applications with varying
performance and dependability requirements. To this end, we
selected a variety of benchmark applications with different
dataflow topology and requirements. For each application, we
expressed the dataflow graph and declared its requirements
using the ImmunoPlane DSL (summarized in Table I). We
used 14 benchmarks taken from 4 different papers, and broadly
categorized them into three groups based on the application’s
requirements. We deploy each application on ImmunoPlane,
and study the effect of both failures and network congestion.
Experimental Setup. Though ImmunoPlane was designed
for IoT infrastructures (which might be more resource-
constrained), we used a resource rich, cloud-like infrastructure
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for this part of the experiment, because we were interested in
studying ImmunoPlane’s ability to adapt under external events,
rather than internal events such as resource contention. We
consider IoT-based infrastructures in the next part (§V-B).

We used six NUMA machines all located in the same rack.
Each machine has two Xeon E5-2640 @ 2.5 GHz, with 6 cores
each and with hyper-threading enabled (24 logical CPUs in
total), 64 GB RAM, and 2.4 TB HDD. The machines were
connected through a gigabit Ethernet switch, and have an
average communication latency of 0.279+0.037 ms.

We hosted the Scheduler exclusively on a machine, and used
five machines to run Workers. We configured ImmunoPlane
to be sensitive to failures and network congestion, to promote
adaptations for our experiment. The Workers were configured
to send a heartbeat every second, and the Scheduler was
configured to consider even a single missed heartbeat as a
disconnection. To observe adaptation to network congestion,
we configured the Workers to adapt after five continuous sec-
onds of network requirement violations. This interval was long
enough to tolerate natural jitter in throughput measurements,
but short enough to detect true congestion. We consider three
requirements, (1) availability, (2) latency and (3) throughput.

1) Availability Requirement: We evaluate the ability of Im-
munoPlane to ensure high availability for the Home Security
benchmark, even when the devices (Workers) hosting these
components fail randomly. The Home Security benchmark
(Fig. 1) contains three data processing pipelines. Among
them, the pipeline including the detector and notifier
components needs to be highly available (see Section II).

There are three steps in the experiment. First, using the DSL,
we indicate that the detector and notifier components
need to be highly available, using the always directive. We
then submit the application description (written in the DSL as
shown in Fig. 3) to the Scheduler, and wait until the application
is deployed. At a random time during the application’s execu-
tion, we crash the Worker hosting the detector component.
Finally, we measure the mean time to recover (MTTR) of the
detector, i.e., the time between the device failure and the
restarting of detector component on another device.

We observed an average MTTR of 1364.6+275.1 ms. Based
on the recovery time obtained, we compute the availability =
%. We plot the availability curve as a function of
the MTBF (mean time between failures), which varies among
devices. Fig. 5 shows the availability curve (blue line) in
logarithmic scale. We evaluate whether we can achieve three-
nines (99.9%) availability, which is the minimum considered
as “high availability” in both academia [23], [24] and industry
(e.g., most cloud service providers issue 25%-100% refunds if
the availability drops below 99.0%, or two-nines [25], [26]).
We find that ImmunoPlane can provide three-nines availability
under random node failures, assuming the host machine fails
every 23 minutes (1363.24 seconds). This is a conservative
assumption, as many IoT devices have higher MTBFs, e.g.,
health-tracking IoT devices fail about four times a day [27].

2) Processing Latency Requirement: The Yahoo Streaming
Benchmark (YSB) [8] and six of the DSPBench applications
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Fig. 5: Availability of application versus MTBF of the host machine,
under a single node failure, in three different infrastructures. MTTR:
in Cloud-only = 1365 ms, in IoT-only = 1714 ms, in Cloud-IoT =
1622 ms. Higher availability is better, lower MTTR is better.

shown in Table I comprise parallel or concurrent processing
pipelines, where the input workload is distributed among
multiple components. For these applications, we evaluate
ImmunoPlane’s ability to deliver low processing latency, even
when under network congestion. We discuss the results for the
YSB, but we obtained similar results for DSPBench programs.

The YSB consumes input messages via Kafka [28], filters
and transforms messages in parallel, and commits processed
messages into Redis [29]. Because the YSB was developed for
SPFs such as Flink and Spark, we had to remove all Flink-
specific deployment and configuration code in order to run
them as ImmunoPlane components. We followed a similar
process for the DSPBench applications, which had Storm-
specific code. We verified that we preserved the application’s
semantics by comparing the outputs produced by our version
against those produced by the original implementation.

We also used the unmodified, original test client written by
the authors of YSB. We can set the input message rate (in mps
— messages per second), and the corresponding benchmark per-
formance is measured by reading the timestamps in the output
messages and calculating the end-to-end processing latency.
Prior to performing our experiments, we profile the baseline
processing capacity of YSB (maximum message processing
rate without violating end-to-end latency requirements, and
under no faults). We measured the baseline capacity to be
~ 20,000 mps. We test ImmunoPlane’s ability to adapt for a
given minimum required processing rate of N mps, which we
indicate using the DSL directive min_rate (N mps).

We consider two scenarios. In the first scenario, we ran-
domly crash a Worker as we did for the Home Security
benchmark. In the second scenario, we introduce congestion
at a target link by using the Linux Traffic Control (tc [30]) to
limit its bandwidth. At a random time during the application’s
execution, we limit the bandwidth between one of the parallel
components and the sink component for a 60 second duration.

We observe that, upon failure, the volume of data handled
by the failed Worker is evenly distributed among the rest of
the Workers (Fig. 6), as ImmunoPlane employs round-robin
message distribution unless a distribution policy was provided
by the user. The end-to-end percentile latency is unaffected by
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Fig. 6: Messages processed by each Worker (W1 to W5) every 250
ms, during the first 100 seconds of execution. Higher values are better.
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Fig. 7: 99th Percentile latency for the YSB application under varying
levels of network congestion. The congestion level in the x-axis
indicates the reduction in bandwidth, and the y-axis shows the 99th
percentile latency (p99 latency). Lower values are better.

the failure, as ImmunoPlane adapts quickly to the failure.

We examine how ImmunoPlane helps the application adapt
as we vary the bandwidth at the target link (Fig. 7). The
expected 99th percentile latency (p99) is around 10,000 ms
[8]. We observe that, when the required message rate is under
15,000 mps, the p99 latency remains around 11,000 ms, un-
affected by the congestion. For message rates between 17,500
and 20,000 mps, the application delivers expected performance
without congestion. However, we observe a degradation in
performance as congestion approaches 1 to 1.2 MB/s. This
indicates a point at which the application is unable to deliver
the performance required even with adaptation. As we increase
the message rate further, the effect is more pronounced, with
the p99 latency approaching 50 seconds. Thus, we infer that
ImmunoPlane can adapt to deliver the required performance
for YSB as long as the user requires processing rate of
15,000 mps or less, which is 75% of the maximum processing
capacity. The user needs to profile the application a priori (as
we did) to obtain the maximum processing capacity.

3) Throughput Requirement: We used four RIoTBench [9]
applications and two of the DSPBench applications - these
applications have similar dataflow topology as the benchmarks
used in § V-A2. However, they prioritize throughput rather
than latency, as they process large input files offline.

The RIoT-ETL and DSP-WordCount applications are simi-
lar to YSB; they have a parallel processing pipeline through
which the input data is distributed uniformly. Therefore, the
behavior we observe in RIOT-ETL and DSP-WordCount is
the same as that of YSB. Upon a failure or congestion, the
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Fig. 8: Messages processed over time by the Average component
in RIoT-PRED. Higher values are better.
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Fig. 9: Observed throughput versus available bandwidth for the
Average component in RIoOT-STATS. Higher values are better.

messages intended for the failed Worker are distributed to the
other Workers. Therefore, we do not discuss these results.

The other three benchmarks in RIoTBench and the DSP-
LogProcessing applications exhibit a different behavior when
dealing with failure or congestion. Since these benchmarks
contain pipelines that are not parallel, data cannot be routed
to another component when a pipeline fails or is congested.
Therefore, for the components that do not have parallelism, /m-
munoPlane applies the Standby and Watch mechanism in order
to make them highly available. Fig. 8 illustrates what happens
to a non-parallel pipeline with and without the Standby and
Watch mechanism. Without it, the application does not recover
from the failure, and the processing stops immediately. With
it, the stream is routed to the standby component upon failure.
As a result, the end-to-end throughput requirement is satisfied.

To observe the effect of congestion, we perform similar
experiments as those in § V-A2; we deploy the benchmark,
then at a random point in time, we limit the bandwidth of
the input stream of one of the components for 60 seconds
using tc. We run this experiment for varying levels of required
throughput, set using the min_rate directive.

Fig. 9 shows the observed link throughput for the target
link (input to the Average component®) in the RIoT-STATS
benchmark. The curve y = z is the link capacity — throughput
can never exceed the physical bandwidth. When we set the
required throughput to 500 mps, we observe that the link
throughput is at maximum capacity. The throughput plateaus
when the bandwidth is greater than 3.5 MB/s, indicating that

2We refer the reader to the original RIoTBench [9] and DSPBench [10]
papers for detailed topology and component description.
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Fig. 10: Critical bandwidth at which adaptation is triggered, for
different levels of user requirement.

the application cannot deliver a higher throughput. When the
link bandwidth is set to 500 KB, the throughput drops to zero.
This is the point (we call it the critical bandwidth) at which
ImmunoPlane triggers adaptation, migrating the component
to another Worker with a larger available bandwidth. As we
increase the required throughput, we observe that the criti-
cal bandwidth also increases, indicating that ImmunoPlane’s
adaptation strategy adjusts to the user requirements.

Fig. 10 shows the critical bandwidth for the benchmarks,
plotted in log-log scale for different values of user-required
throughput. We observe that the critical bandwidth varies
among the benchmarks, showing that ImmunoPlane transpar-
ently adapts for different benchmarks. However, when the user
requirement exceeds 3000 mps for RIoT-STATS and RIoT-
PRED, ImmunoPlane cannot satisfy the requirement as it
either exceeds the physical capacity or the application capacity.
The throughputs for DSP-LogProcessing and RIoT-TRAIN are
orders of magnitude smaller, but we observe the same trend.

Summary of Part 1. Using 14 benchmark applications, we
evaluated ImmunoPlane’s ability to support different user re-
quirements in a cloud-like infrastructure. For each benchmark,
we have used our DSL to express the requirements in terms
of policy directives, and then observed whether ImmunoPlane
adapts to satisfy the requirements under random failures and
different levels of congestion. We find that ImmunoPlane is
able to deliver 99.9% availability even assuming a single
device failure every 23 minutes. In terms of satisfying latency
or throughput requirements, ImmunoPlane is able to satisfy
them as long as the requirement is set to less than 75% of the
baseline processing capacity. This is an approximate lower
bound for the performance level under which ImmunoPlane
can provide adaptivity, and is lower than those claimed for
SPFs (90%) [31], [32]. Determining a precise performance
requirement to set (such as maximum sustainable throughput)
is out of the scope of this work — this is a subject of
active research [31], [32]. We also observe that ImmunoPlane
triggers adaptations at different congestion levels, depending
on the requirements set by the user. Overall, ImmunoPlane can
support different application-level requirements specified.
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B. Part 2: Adaptivity in Different Infrastructures

In this part, we examine whether ImmunoPlane can trans-
parently provide adaptivity in different deployment infras-
tructures. We take the same benchmark applications and
requirements from the previous part (§ V-A), and deploy
them in two additional infrastructures: loT-only, and Cloud-
IoT infrastructures. We introduce random device failures and
congestions as we did for the Cloud-only infrastructure, and
observe how ImmunoPlane adapts in different infrastructures.
Experimental Setup. We use two setups in addition to the
cloud-only setup in §V-A. The first is the IoT-only testbed,
which consists of four Raspberry Pi 3s and two Raspberry Pi
4s. The Raspberry Pi 3 is equipped with a quad-core 1.2 GHz
ARM7, 1 GB RAM, and 32 GB Micro SD. The Raspberry
Pi 4 has a quad-core 1.5 GHz ARMS, 4 GB RAM, and 64
GB Micro SD card. One of the Raspberry Pi 4s is used to
host the Scheduler, and the five other Raspberry Pis run the
Workers. They are connected wirelessly over a gigabit router.
The second setup is the Cloud-IoT testbed, consisting of three
NUMA machines — used in Part 1 — and three Raspberry Pi
3s. One of the NUMA machines is used for the Scheduler.

As before, we consider the same three requirements, namely
availability, latency, and throughput.

1) Availability Requirement: We perform the same random
failure experiment from Part 1 on the IoT-only and Cloud-IoT
testbeds. For the Cloud-IoT testbed, we assign an IoT device
(Raspberry Pi 3) to run the streamer component (the data
source). From the user’s perspective, no additional code or
configuration is required to run the application. However, the
Scheduler produces a different placement for each infrastruc-
ture to satisfy the availability requirement.

The MTTR is 1713.8 £ 311.5 ms in the IoT-only testbed
and 1622.1 £+ 207.9 ms in the Cloud-IoT testbed, taking
marginally longer than in the Cloud-only (1364.6 ms) testbed.
We calculate that ImmunoPlane can provide three-nines avail-
ability when the MTBF is 29 minutes (1712.09 seconds) or
greater in the IoT-only testbed, and the MTBF is 27 minutes
(1620.48 seconds) or greater in the Cloud-IoT testbed (Fig. 5).
Due to slower recovery, a larger MTBF is required in the loT-
only and Cloud-IoT testbeds to achieve the same availability
as in the Cloud-only testbed.

Note that in homogeneous infrastructures (Cloud-only and
IoT-only), the Scheduler produces similar plans, distributing
the application components uniformly among the Workers.
However, in the Cloud-IoT testbed, the Scheduler predomi-
nantly favors cloud Workers, since there are more resources
available on cloud machines. As a result, the two cloud ma-
chines host all the components except the streamer. Upon a
failure, one of the IoT Workers restarts the failed components.

2) Processing Latency Experiment: We run the YSB in the
two additional testbeds. Because each testbed has a different
physical capacity, we set different input rates for them. We
performed a profiling run to obtain the appropriate range of
message rates (as we did for Part 1). For the IoT-only testbed,
the input rate is set in the range of 1,000 to 2,600 mps, and
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for the Cloud-IoT testbed, the input rate is set in the range of
5,000 to 10,000 mps.

The general trend is that the p99 latency at different
congestion levels (Fig. 11a) is similar to that of the Cloud-only
testbed from Part 1 (Fig. 7). The only difference we observe is
that the processing capacity of the IoT-only testbed is around
1,800 mps (12% of Cloud-only testbed).

In the Cloud-IoT testbed, we experimented with introducing
congestion either in the cloud (Fig. 11b) or in the IoT links
(Fig. 11c). We observe that the application performance is
much more sensitive to congestion in the cloud. ImmunoPlane
is able to adapt to congestion when the required throughput is
under 5,000 mps or if the congestion is less than 200 KB/s.
However, the performance degrades quickly as the congestion
approaches 1 MB/s. When congestion was introduced in the
IoT link, the application performance is not affected as much
by varying congestion levels. Consequently, the application
requirements are met as long as they are under 8,000 mps,
but not when they are higher.

3) Throughput Requirement: Again, we run the same ex-
periments from Part 1, in the [oT-only and Cloud-IoT testbeds.
The overall behavior is similar to that for the Cloud-only
testbed (§V-A3) — i.e., ImmunoPlane adapts by activating
the standby component when the available link bandwidth
becomes critically limited. In both testbeds, ImmunoPlane is
able to adjust the critical bandwidth depending on the user
requirement, just as it did in the Cloud-only testbed. Hence,
we only highlight the notable differences. For the IoT-only
testbed, we observe that the range of critical bandwidth is
much lower (in the range of 50 to 200 KB/s), understandably
because the throughput requirement is set to a lower value
to reflect its physical capacity. For the Cloud-IoT testbed, we
observe that the Scheduler always places the target component
and its standby component on the cloud, so that upon a
requirement violation, another cloud Worker takes over. Thus,
the link throughput we observe for the Cloud-IoT testbed is
in the same ballpark as in the Cloud-only testbed.

Summary of Part 2. We evaluated ImmunoPlane’s ability
to adapt in different deployment infrastructures. For each
infrastructure, we profiled the baseline processing capacity for
each benchmark, so that we can set a reasonable performance
requirement for our experiments. We find that ImmunoPlane is
able to provide similar levels of availability across the Cloud-
only, IoT-only, and Cloud-IoT testbeds. However, there are
minor differences caused by [oT devices taking slightly longer
than cloud devices to recover failed components. We observe
that ImmunoPlane employs similar adaptation strategies in
different types of homogeneous infrastructures (Cloud-only
and IoT-only). In the Cloud-IoT testbed, ImmunoPlane favors
running more work on the cloud, and thus is more sensitive
to failures and congestion in the cloud. Overall, ImmunoPlane
transparently produces deployment plans optimized for differ-
ent infrastructures to meet the user requirements.
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VI. RELATED WORK

Stream Processing Frameworks. As many IoT applications
involve processing data streams, we studied stream processing
frameworks (SPFs) to see whether they can provide adaptivity
for IoT applications. SPFs such as Apache Kafka [28], Flink
[3], Storm [33], and Spark [4] provide built-in adaptivity
features such as failure recovery and load-balancing. A user
can leverage these features through the framework’s API, in an
infrastructure-agnostic manner. However, SPFs are specialized
for parallel processing of large datasets. Thus, they optimize
either for end-to-end latency (e.g., Kafka, Flink, Storm) or
for overall throughput (e.g., Spark). Although SPFs provide
infrastructure-agnostic adaptation capabilities, they support
only a fixed set of global requirements, and do not support
component-specific local requirements.

IoT/Edge Computing Frameworks. IoT and edge computing
frameworks generally do not provide built-in support for
adaptivity. Instead, they provide specialized services (often
cloud-based) that can serve as building blocks for adaptivity.
For example, AWS IoT Greengrass [34] provides services such
as [oT Device Shadow for monitoring devices, Amazon S3 for
reliable data storage, and Amazon SQS for reliable messaging.
By using the appropriate services, a user can customize their
deployment plan. However, for each deployment environment,
the user still needs to determine the appropriate placement
and configuration, such that the application’s requirements are
satisfied. Although the cloud services reduce the development
effort to some extent, the user still needs to design the concrete
deployment plan for each application and environment.
Dataflow Optimization and Adaptivity Frameworks. There
are frameworks that provide additional optimization and adap-
tivity features on top of existing runtime systems. These
systems also aim to reduce the burden on the user.

Nemo [35] is an optimization framework that transparently
produces an optimized deployment configuration for a target
SPE. It compiles applications written in dataflow languages
such as Beam [36] into an abstract intermediate representation
(IR) DAG, from which concrete optimizations are generated
for a target SPF such as Spark. A similar approach was
taken in Musketeer [37] and Optimus [38], both focusing on
systems such as Spark [4] and DryadLINQ [39]. The high-
level idea of converting infrastructure-agnostic policies into
concrete deployments is similar to our approach. However,
they support only stream processing applications.
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. 11: 99th Percentile latency under varying levels of congestion, in different infrastructures (testbeds). Lower values are better.

Steel [40] is an edge computing framework with motivations
similar to ours. Steel automatically configures and deploys
edge applications over the cloud and edge, and demonstrates
the approach on top of the Azure ecosystem. Unlike Immuno-
Plane, Steel requires the user to specify component placement,
and does not allow users to specify different requirements.

Program Control Language (PCL) [6] is a coordination lan-
guage used for enabling adaptivity in a distributed application.
PCL provides APIs for specifying the metrics to observe and
describing the adaptations to apply. While a user can customize
the adaptation plan for each application, they must be aware of
the performance characteristics of each target infrastructure.

CHARIOT [5] is a framework that facilitates autonomous
management of IoT systems. It provides a DSL for describ-
ing the application components, their relationships, and the
deployment configuration. For instance, it allows a user to
describe which component to replicate and where, so that the
component can tolerate failures. However, the user still needs
to determine how to achieve the high-level user requirements
using the provided functionalities in their DSL.

To summarize, systems such as Nemo and Steel transpar-
ently produce deployment plans, but they target a specific class
of applications and do not support different requirements. In
contrast, systems such as PCL. and CHARIOT can be used to
satisfy different requirements, but require the user to develop
the concrete deployment plan, which requires user effort.

VII. CONCLUSION AND FUTURE WORK

We presented ImmunoPlane, a middleware system that
enables [oT applications to adapt to failures and network con-
gestions in different runtime infrastructures, while satisfying
their requirements, with minimal user effort. ImmunoPlane
provides a DSL for users to express different requirements
in a declarative manner, without having to describe the adap-
tation mechanism explicitly. By providing an adaptation layer,
ImmunoPlane transparently converts the application require-
ments into an adaptive deployment plan for the underlying
runtime infrastructure. We evaluated ImmunoPlane using 14
benchmarks, and showed that it supports various types of
applications, and user requirements e.g., availability, latency,
and throughput. Further, ImmunoPlane transparently supports
the same requirements in different runtime infrastructures.

There are two directions for future work. First, Immuno-
Plane supports common performance and dependability re-
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quirements such as latency, throughput, and availability. In
our future work, we want to consider requirements such as
energy consumption when providing adaptivity. Second, we
have conducted our experiments in a setting where there was
little contention between components. We will examine the
effect of resource contention in future work.
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