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Abstract—HTTP/2 introduced multi-threaded server operation
for performance improvement over HTTP/1.1. Recent works have
discovered that multi-threaded operation results in multiplexed
object transmission, that can also have an unanticipated positive
effect on TLS/SSL privacy. In fact, these works go on to design
privacy schemes that rely heavily on multiplexing to obfuscate
the sizes of the objects based on which the attackers inferred
sensitive information. Orthogonal to these works, we examine if
the privacy offered by such schemes work in practice.

In this work, we show that it is possible for a network ad-
versary with modest capabilities to completely break the privacy
offered by the schemes that leverage HTTP/2 multiplexing. Our
adversary works based on the following intuition: restricting only
one HTTP/2 object to be in the server queue at any point of
time will eliminate multiplexing of that object and any privacy
benefit thereof. In our scheme, we begin by studying if (1)
packet delays, (2) network jitter, (3) bandwidth limitation, and (4)
targeted packet drops have an impact on the number of HTTP/2
objects processed by the server at an instant of time. Based on
these insights, we design our adversary that forces the server to
serialize object transmissions, thereby completing the attack. Our
adversary was able to break the privacy of a real-world HTTP/2
website 90% of the time, the code for which will be released.
To the best of our knowledge, this is the first privacy attack on
HTTP/2.

Index Terms—HTTP/2 attack, HTTP/2 privacy, encrypted
traffic analysis

I. INTRODUCTION

The Facebook-Cambridge Analytica data scandal [1]

showed the monetary value of seemingly unimportant personal

preferences (e.g., Facebook pages liked) of website users. In

recent times, a more severe form of privacy attack, that does

not even require access to the end user or the server devices,

has been reported. This form of attack is carried out by an

adversary that compromises a network device that sits between

the client and the server and relies merely on the encrypted

traffic exchanged between the two. Further, this attack is totally

non-intrusive and does not require compromising the decryp-

tion key. Instead, the adversary analyzes the encrypted traffic

using statistical and machine learning techniques to reveal

web access patterns that are indicative of user preferences.

Many research works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] have

highlighted the vulnerability of HTTP/1.x (with SSL/TLS)

based webservers to these encrypted traffic analysis attacks.

Traffic analysis attacks on HTTP/1.x-based websites use

the sizes of encrypted objects (images, JavaScript files, etc.)

transmitted by the server to uniquely identify the webpage

accessed by the client. For instance, a research work [13] was

able to identify the political leaning of users of a popular

survey website [14, 15, 16] just based on the size of encrypted

image files. Although there exist other channels through which

such information can be inferred by an adversary, encrypted

object size is the most reliable and widely used side-channel.

Consequently, the defense techniques [17, 18, 19, 20, 21]

against such attacks aim to obfuscate object sizes, albeit at

the cost of unreasonable CPU and bandwidth overheads, which

often make them impracticable.

The HTTP/2 protocol [22] is being seen by recent research

works [23, 24] as an efficient alternative to such expensive

defense techniques. The idea is to use the newly introduced

multi-threading feature of the HTTP/2 server that can po-

tentially multiplex multiple objects during transmission. By

multiplexing the objects, the resulting TCP stream will have

interleaved segments belonging to different objects, making

it difficult for a network eavesdropper to discern the en-

crypted sizes of objects of interest. Therefore, the parallelism

in object transmission, although introduced for performance

improvements, has the potential to improve privacy without

any additional effort. Orthogonal to these efforts, in this paper,

we investigate the following question:‘Can we depend on
HTTP/2 Multiplexing for obfuscating encrypted object sizes?’.

We show that a network adversary with the same privileges

as a traditional on-path passive eavesdropper can completely

break the privacy guaranteed by HTTP/2 Multiplexing. Our

adversary leverages the simple fact that spacing consecutive

GET requests sent by a client will eliminate any opportunity

for the server to multiplex the objects corresponding to these

requests. We begin by constructing an adversary that alters

network parameters such as latency, jitter, bandwidth, and

packet drops. We then observe the effect of each parameter

on the multiplexing of objects within an HTTP/2 stream. Our

adversary achieves inter-request spacing by adding jitter at the

compromised network device immediately after the request

corresponding to the object of interest is forwarded. Doing

so results in non-multiplexed transmission of the targeted

object, thereby breaking the privacy. However, adding jitter has

the side-effect of intensified multiplexing for the subsequent

objects, which would pose a challenge for the adversary if it

were interested in those objects also. Note that the intensified

multiplexing is mainly due to the retransmission requests sent

for the delayed object (due to jitter) by the client’s TCP layer.

To suppress the intensity of multiplexing of subsequent

objects, we use the following strategies: (1) limit network
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Fig. 1: Estimating object sizes from encrypted traffic in non-multiplexed (i.e., O2 after O1) vs. multiplexed object transmissions (i.e.,
O1Seg1 → O2Seg1 → O1Seg2 → O2Seg2)

bandwidth, and (2) reset the ongoing HTTP/2 streams. The

adversary limits the network bandwidth to ensure that a limited

number of client requests reach the server. This reduced the

scope for multiplexing at the server, albeit not completely.

When this is not sufficient, the adversary may choose to force

the server to reset all the ongoing HTTP/2 streams. Doing

so will restart the transmission for the subsequent objects

with a clean slate. To achieve this, our adversary drops the

packets carrying retransmitted objects, which in turn makes

the client time-out and request a server reset. Following this,

the client again requests for the subsequent object of interest.

At this point, the adversary repeats the attack as it did for

the first object of interest. We demonstrate the effectiveness of

our enhanced adversary using the website www.isidewith.com,

a political survey website that was recently migrated from

HTTP/1.1 to HTTP/2 for privacy reasons. Our attack was able

to discern all objects of interest 90% of the time. To the best

of our knowledge, this is the first traffic analysis attack on

HTTP/2 technology.

The rest of the paper is organized as follows: Section II

covers the background necessary to understand the paper.

Section III provides a high-level overview of our attack.

Section IV provides a comprehensive analysis of the impact

of network parameters on HTTP/2 multiplexing. Section V

describes our adversary and evaluates its impact on a real-

world website. We discuss the literature related to our work

in Section VI. Finally, we conclude the paper and provide

future directions in Section VII.

II. BACKGROUND

HTTP/2 Multiplexing. The advent of HTTP/2 protocol

brought significant improvements over HTTP/1.1 in terms of

user perception of latency during webpage loads. Contrary to

HTTP/1.1, where requests are processed sequentially, HTTP/2

allows concurrent server threads to serve multiple objects

on the same TCP connection, effectively multiplexing them.

Such a design is particularly useful in avoiding Head-of-Line

blocking – the scenario where a large object in the queue

blocks the subsequent objects from being processed. This

phenomenon is prevalent in HTTP/1.1 and has been widely

exploited by adversaries for performing traffic analysis.

The multiplexed object transmission in HTTP/2 makes it

difficult for a passive adversary to identify individual objects

when TLS/SSL is used. Figure 1 illustrates how a passive

network adversary perceives non-multiplexed and multiplexed

object transmissions. Case 1 shows a simple scenario where

the client requests for O2 after the transmission of O1 is

completed. The network adversary that has access only to the

size of the packets can still determine that the transmission

of O1 is complete the moment it receives a delimiting packet,

i.e., the last packet with size that is less than (rarely equal to)

the Maximum Transmission Unit (MTU). Similarly, it can de-

termine the start and end of transmission of O2. Consequently,

the adversary can sum up the packet sizes corresponding to

O1 and O2 to determine their sizes, from which the objects’

identities can be revealed. On the other hand, in Case 2,

the client requests for O2 before the transmission of O1 is

completed. Consequently, the segments of O1 get interleaved

with those of O2, thereby making it difficult for the adversary

to estimate the sizes of the individual objects. This fact has

been used by recent works to thwart privacy attacks that

depend on the encrypted object sizes.

Privacy of HTTPS Communication. Privacy, in the context

of Internet communications, is a very fluid concept. In this

work, we consider privacy as the property of a client-server

communication due to which the fine details of the client’s

browsing activities are protected from a passive network eaves-

dropper. An example of such information is the webpage(s)

visited by the client within a website. Despite the use of

TLS/SSL encryption, prior works have shown that it is possible

to infer these fine details by analysis of encrypted network

traffic. A comprehensive study of such works suggest that,

for accurately identifying from encrypted traffic if a particular

webpage within a website was accessed, it is sufficient if (1)
the webpage contains at least one object which is not contained

in any other webpage in the website, (2) the size of the object

is different from those of all other objects that constitute the

website, and (3) the eavesdropper is able to infer the encrypted

object size from the network trace. Hence, we consider that

the privacy of a webpage is completely broken if a network

adversary is able to infer the size of an object that uniquely

identifies the webpage (provided it exists) from encrypted

traffic. So far, researchers have been successful in launching

privacy attacks on HTTP/1.x. On the other hand, the privacy

of HTTP/2 in the aforementioned context is still an ongoing

topic that is being investigated. There are early indications

that HTTP/2 inherently prevents such privacy attacks since

estimating object sizes from encrypted traffic is not possible
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due to multiplexing [23, 24]. Investigating the privacy of

HTTP/2 is the primary objective of our paper.

The privacy of the communication channel can also benefit

from orthogonal technologies such as ToR. However, a larger

proportion of Internet users still do not have access to such

services and are therefore, susceptible to traffic analysis based

attacks. Even when using ToR, traffic analysis could be

employed at the weakest spots such as the ToR entry guard.

Therefore, we strongly advocate a comprehensive investigation

of the privacy offered by the underlying application layer

protocols such as HTTP/1.1 or HTTP/2, before designing

defense techniques that supplement them.

Network Parameters. We have seen that multiplexing can

prevent attempts by a passive network adversary to estimate

object sizes. However, we suspect that multiplexing can be

affected by variations in network conditions – they may

influence the TCP layer parameters such as congestion window

size, which may, in turn, affect the HTTP/2 parameters such

as the intensity of multiplexing. We consider the following

network variations in our work:

1) Delay. An addition of a uniform delay in the network

increases the Round Trip Time (RTT) of every packet

exchanged between the client and the server. However, the

time interval between the transmission of two consecutive

packets on the network remains the same as in the case of

the network with no delay.

2) Jitter. Most real-world networks experience jitter, i.e., vari-

able network delays. Contrary to a network with uniform

delay, in a jittery network, the inter-packet time intervals

are not consistent, when compared to those in case of the

network without jitter.

3) Bandwidth throttling. Bandwidth throttling is often per-

formed by Internet Service Providers (ISPs) to limit the

number of packets transiting the network. Bandwidth lim-

itation may result in slow loading of images and videos in

webpages and degraded quality of video streaming.

4) Targeted Packet drops. Packets can be dropped in a

targeted manner from any intermediate network device,

either due to benign reasons (such as congestion control at

a router) or due to an adversary residing on the router.

As we will see, changes in traffic patterns at the network layer

affect the multiplexing behavior of the HTTP/2 server. The

implications of this finding are particularly alarming since even

a passive network adversary can control network conditions to

a certain extent.

A. Measuring Privacy

We define a metric to quantify the extent of multiplexing

of objects, which, in turn, will help us in determining if the

information targeted by the adversary is private or not.

Degree of Multiplexing. We define the degree of multiplexing
of an object as the fraction of bytes of the object that is

interleaved with those of another object within the same TCP

stream.

Implication on Privacy. From the definition of degree of

multiplexing, we can say that, in the scenario where the

(a) Multiplexed object transmission in HTTP/2 in a benign scenario

(b) Non-multiplexed object transmission in HTTP/2 due to adversarial interven-
tion

Fig. 2: High level overview of proposed adversarial scheme

adversary is able to reduce the degree of multiplexing of an

object to zero, i.e., no byte of the object is interleaved with

another object, they can estimate the encrypted object size.

For instance, if two specific resources are required to uniquely

identify a webpage, a scheme that prevents the multiplexing

of the two objects is sufficient to break the privacy.

III. HIGH LEVEL OVERVIEW

In this section, we provide a high-level overview of our

adversarial scheme. The objective of our adversary is to infer

the webpages accessed by a targeted client (or user) within

a targeted HTTP/2 website using encrypted network traffic

analysis techniques. Our adversary uses encrypted object sizes

as a side-channel. Using encrypted object sizes in HTTP/2

is particularly challenging due to the multiplexed nature of

object transmission. Our adversary is designed to overcome

this challenge.

Figure 2 shows the capability of our adversary and its

impact on HTTP/2 multiplexing. We assume that the adversary

knows which objects to focus on, for breaking user privacy.

Hence, it is sufficient for the adversary to prevent the multi-

plexing of only these objects of interest, which we assume to

be O1 in our example. Figure 2a depicts the scenario without

our adversary. At time t1, the client sends two successive

GET requests for O1 and O2. Let IAT be the time interval

between the two requests, which is very small. At time t2, the

packets are routed through the intermediate network device

and reach the server. At time t3, the segments of O1 and O2
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Fig. 3: Interleaved object transmission by an HTTP/2 server

are transmitted in an interleaved manner due to server multi-

threading. Finally, at time t4, the object segments reach the

client in an interleaved manner, where they are assembled by

the browser.

Figure 2b depicts the same scenario with our adversary

controlling an intermediate networking device. Our adversary

changes the network parameters to delay the GET request

for O2 by an additional time d (with respect to arrival time

of O1). This extra delay in arrival of O2’s request ensures

that the server completes transmitting O1 before initiating the

transmission of O2. Thus, the network adversary prevents the

multiplexing of the objects of interest. When the adversary is

interested in more than one object in the same TCP stream,

the attack gets challenging due to the repercussions of the

previously introduced delay. We describe how our adversary

overcomes these in the rest of the paper.

Capability of Adversary. Our adversary is a compromised

network device on the client-server path that can (1) access

unencrypted header fields of both control and data packets,

(2) monitor size of encrypted packets, (3) delay packets,

(4) limit the bandwidth of the transit link, and (5) drop

packets. At the outset, this adversary model might seem

stronger than the popular passive adversary model used in prior

works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24], which would

only capture network traffic in promiscuous mode. However,

in reality, the privilege required (i.e., superuser access) for

doing so is sufficient for tuning the network parameters. Such

an adversary model is not only realistic but also common

today [25]. Also, since we assume a non-intrusive adversary,

MITM attacks that involve key hijacking and/or server imper-

sonation, or require compromising the client’s browser are out

of scope of this work.

Assumptions and Scope. We make the following assumptions

for our adversarial scheme. (1) We assume that the goal of our

adversary is to infer the identity of objects from the encrypted

HTTP/2 stream. Once this is done, any of the techniques from

the HTTP/1.x literature can be used to launch a full-fledged

privacy attack. (2) We assume that the adversary does not

have the capability to decrypt at the point of real user traffic

collection. Breaking encryption is indeed a difficult problem to

solve, and there exists no practical work that can do this. This

assumption holds true for most authorized and unauthorized

parties except maybe those involving government agencies. (3)
We assume that the adversary’s behavior cannot be detected

easily at the client or the server since it mimics network issues

that are commonplace. (4) We also assume that the adversary

has sufficient time (≈ few minutes) to access the website and

tune the network parameters before launching the attack. (5)
We assume that the adversary has the knowledge about the

sequence in which objects in the webpage are requested for

and the specific object that is of interest.

IV. IMPACT OF NETWORK PARAMETERS ON HTTP/2

MULTIPLEXING

In this section, we explain how the network parameters

affect multiplexing at the server. We start by extending Fig-

ure 2 to show the server side operations. Figure 3 shows the

threads that get created at the server corresponding to the GET

requests sent by the client. The server, on receiving the first re-

quest, spawns a thread (Thread#1), which starts enqueueing

the first segment of O1 on the server queue for transmission

on the TCP stream, as shown in Step 1 . However, before

Thread#1 could enqueue the second segment of O1, (i.e.,

O1 − Seg2), the server receives a request for the object O2

from the client and spawns a second thread (Thread#2) that

starts enqueueing segments of O2 on the server queue (refer

Step 2 ). This is followed by the enqueueing of O1 − Seg2
(refer to Step 4 ) and O2−Seg2 (refer to Step 5 ) respectively.

In the presence of TLS/SSL encryption, this interleaving of

object segments makes it difficult for our network adversary

to estimate object sizes, as discussed in Section III.

We reinforce our explanations with experimental results

on an object in the webpage showing the results for the

‘2020 Presidential Quiz’ in the website www.isidewith.com.

The object of interest is an HTML file of size ≈ 9500 bytes.

By default, the degree of multiplexing of this object is ≈ 98%.

We now examine the change in the degree of multiplexing of

this object with change in each of the network parameters,

viz., delay, jitter, bandwidth, and packet drops.

A. Delay

Introducing uniform delay for all packets on client → server

path in the network cannot increase the inter-arrival time

between two successive packets at the server. Hence, we do

not use this parameter for our adversarial scheme.

B. Jitter

The inter-arrival time between two successive GET requests

sent by a client can be increased by delaying each of the

request packets by an unequal amount of time. The proposed

adversary can achieve this by introducing a calculated amount

of network jitter on the client-server path. For instance, in our

example, the first request can be delayed by 0 ms, second

by d ms, the third by 2d ms, and so on, to achieve an inter-

arrival spacing of d ms. The amount of jitter to be introduced

should depend on the size of the object of interest, the time

elapsed since the previous GET request, and the time interval
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Fig. 4: Effect of network jitter on multiplexing of objects in HTTP/2

before the issuance of the next GET request by the client under

normal network conditions.

Figure 4 illustrates the HTTP/2 server behavior under jittery

network conditions by extending Figure 3. The adversary

holds back the client request for O2 at the intermediate

network device for a longer time than usual. Consequently,

the server thread serving O1 (i.e., Thread#1) completes the

transmission of all the segments of O1 in single-threaded mode

before the request for O2 reaches the server (refer to Step 1

and Step 2 ). Therefore, if O1 is the only object of interest

to the adversary, then its start and end points of transmission

and hence its size can be estimated.

When the adversary is also interested in a subsequent object

(O2 in this example), introducing jitter in the network can

introduce complications. This happens when the client request

for O2 is delayed for a considerably long period of time. This

may lead the server to send duplicate acknowledgements (dup-

ACKs) to a previous GET request sent by the client, which

makes the client believe that the request for O2 has been

dropped in the channel. When this happens, the client sends a

bunch of retransmission requests, called TCP Fast-retransmits,

for the same object to the server within a short span of

time (denoted by ReqO2
∗ and ReqO2

∗∗). The retransmitted

requests cause the HTTP/2 server to spawn multiple concurrent

threads (Thread#2, Thread#3 and Thread#4) that serve

multiple copies of O2 to the client over the same TCP

stream in interleaved manner, thereby resulting in intensified

multiplexing.

In our experiment, the object of interest in isidewith.com
is the 6th object downloaded by the client. Table I shows the

impact of increasing jitter values on the degree of multiplexing

of the object. For each jitter value shown in the table, the

webpage was downloaded 100 times. Initially the number of

cases where the object was not at all multiplexed increased

steadily with an increase in the amount of jitter until 50 ms.

However, increasing jitter further did not have any effect.

This was because, at this point, the number of retransmission

requests (> 130) started increasing manifold and the segments

Increase in delay
per request
(ms)

Cases where
object of interest
was not multiplexed
(%)

Increase in
no. of

retransmissions
(%)

0 (baseline) 32 0 (baseline)
25 46 ≈ 33
50 54 ≈ 130
100 54 ≈ 194

TABLE I: Effect of jitter on HTTP/2 multiplexing

Fig. 5: Effect of bandwidth limitation on multiplexing of objects in
HTTP/2

of the retransmitted objects got interleaved with those of the

object of interest. Therefore, we set the jitter such that the

inter-arrival time of requests is 50 ms. The next challenge for

our adversary is to reduce the number of object retransmissions

and object retransmission requests.

C. Bandwidth Limitation

Reducing the bandwidth during an ongoing communication

session, given a particular amount of delay in the network,

reduces the bandwidth-delay product (BDP). BDP is a measure

of how much information (outstanding packets) the commu-

nication channel can hold at a given instant of time. When

the BDP reduces, the TCP protocol at the communication

endpoints responds to this change by decreasing the size of

the TCP sender window. We rely on this intuition to reduce

the number of fast-retransmit requests sent by the client.

We extend the setup described in Section IV-B with band-

width limits applied at the compromised network device. Note

that the bandwidth limits are applied for both incoming and

outgoing packets. Our experiment starts with a channel band-
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Fig. 6: Targeted packet drop by adversary to force non-multiplexed object transmission in HTTP/2

width of 1000 Mbps. During the course of the experiment, we

varied the bandwidth to 800 Mbps, 500 Mbps, 100 Mbps and 1

Mbps. For each bandwidth, the webpage was downloaded 100
times and we noted the corresponding degree of multiplexing

of the object.

Our experimental results show that throttling the network

bandwidth indeed reduces the number of retransmissions as

seen in Figure 5 (solid line). Contrary to our expectation,

the percentage of cases in which our object of interest was

in non-multiplexed state, i.e., success cases (dashed line),

initially goes up sharply till 800 Mbps but reduces gradually

right after. When we delved deeper, we understood that a

significant percentage of successes observed till 800 Mbps

can be attributed to a retransmitted version of the object and

not the actual object. With a rapid decline in the number of

retransmissions post 800 Mbps, the number of such success

cases also reduce, thereby affecting the overall number of

success cases at the lower bandwidths. Note that it was not

possible to reduce the bandwidth beyond 1 Mbps because that

resulted in a broken connection. Based on our observations,

we limit the bandwidth of the medium to 800 Mbps. However,

this can only improve the success rate to a small extent.

D. Targeted Packet Drops – forcing HTTP/2 Stream Reset

In this section, we investigate if another feature of HTTP/2

protocol, namely, the HTTP/2 stream reset, can further im-

prove the success rate of our attack. The HTTP/2 reset

stream was introduced to enhance the efficiency of a server

especially when dealing with a highly lossy communication

channel. Typically, the client sends the TCP fast-retransmit

requests to deal with network layer delays and losses that are

not persistent. However, when the communication channel is

highly lossy, the client sends the HTTP/2 reset stream signal

to the server (indicated by a packet with the corresponding

HTTP/2 stream number and RST STREAM flag set). Reset

Stream is particularly interesting since the server closes the

stream and flushes the corresponding object segments from its

queue thereby reducing the load on the network immediately.

In response to the lossy medium, the client’s TCP stack also

increases the timeout for fast-retransmits. After Stream Reset,

the client resends GET requests if a high priority object is

not yet received. We now exploit this feature to improve the

success rate of our attack.

Figure 6 depicts a scenario that builds on the scenario de-

scribed in Figure 4: firstly adding jitter (refer section IV-B) fol-

lowed by limiting the network bandwidth (refer section IV-C).

To force a HTTP/2 stream reset, our adversary drops many

packets on the server → client path (mimicking a lossy

network) carrying the objects segments until the client resets

the streams as shown in Figure 6. After reset, the client again

sends the request for O2. The client’s TCP also waits for

a longer time before attempting to send fast-retransmission

requests. Consequently, by this time, the server can completely

transmit O2 in single-threaded mode. The most challenging

part of this phase of the attack is to identify when to start

and stop dropping packets. This is because the adversary

cannot discern the retransmitted objects from the actual ones.

The adversary can either use a timer or use the number

of forwarded GET requests (identified by using the filter

‘ssl.record.content type==23’).
We experimentally verified the effect of targeted packet drop

(with both jitter and bandwidth limits applied) on HTTP/2

multiplexing on the HTML file of size 9500 Bytes. Since

the object is the 6th in the stream, the adversary drops 80%
packets on server → client path from the time of transmission

of the 6th GET request from the client. We continue the packet

drops for 6 seconds until the client sends stream reset. The

experiment was repeated 100 times and we observed a success

rate of ≈ 90%, where the object of interest was transmitted in

non-multiplexed state after the Reset Stream signal was sent

by the client. However, further increasing the packet drop rate

resulted in a broken connection.

V. OUR PRIVACY ATTACK

We now demonstrate a real-life adversarial attack 1 using

the insights obtained from Section IV. However, finding a

1Repository: https://bitbucket.org/gmit91/http2 privacy attack
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real website with the complete implementation of HTTP/2

protocols is difficult today. Most HTTP/2 websites do not

enable multiplexing either due to lack of awareness (disabled

by default) or to avoid the extra storage required. Since our

objective was to disprove that HTTP/2 multiplexing offers

privacy, we demonstrated on the strongest HTTP/2 website

known to us.

We chose isidewith.com [14], since it is the most widely

cited website in the fingerprinting literature. This website

allows users to identify their political leanings for the ‘2020
Presidential Elections’. It is also noteworthy that this is the

same website that migrated from HTTP/1.1 to HTTP/2 shortly

after privacy concerns were raised in a prior work [13]. Our

evaluation suggests that currently it is resilient to most of the

known attacks.

Target Website. The website works as follows. In response

to the survey, a webpage containing the list of 8 political

parties in order of preference of the user is displayed. The

webpage consists of an HTML page that contains hyperlinks

of 47 embedded objects, such as JavaScript files, images, and

style files. One of these JavaScripts, on execution, makes the

client to consecutively send request to the server for 8 images

within a short span of time. Each image corresponds to the

emblem of one of the 8 political parties, and the order in which

the client issues requests for these images is the same as that in

which they are displayed on the result webpage. The images of

the political party emblems are of size ranging between 5KB
to 16KB. Our adversary attempts to infer the order in which

the 8 political parties appear on the webpage by encrypted

traffic analysis. In short, the adversary has 9 different objects

of interest – one HTML file and 8 image files. Note that our

adversary has a pre-compiled list of image size to political

party mapping which it leverages to complete the attack.

Client setup. The experiment was conducted with the help

of several volunteers (≈ 500) participating in the survey from

different client systems inside our laboratory over a period of

three months. They were asked to use the Firefox browser,

which, to the best of our knowledge, is the only browser to

have implemented HTTP/2 multiplexing efficiently. Each time,

the volunteers noted down the survey results (sequence of

political parties), which was later used as the golden reference

to determine the prediction accuracy of our adversary.

Adversary Setup. We designated our lab’s gateway (with

1 Gbps link) as the adversary. The gateway monitored the

transiting traffic and whenever it could detect a connection to

isidewith server, it launched the attack. The adversary was

made up of 3 basic components – (a) the traffic monitor,

which was implemented using tshark; (b) the network con-

troller, which was implemented using bash scripts; and, (c)

the object prediction module, which was implemented using

Python scripts. In the first phase of the attack, the adversary

introduced jitter (of 50 ms additional delay) in the client-server

communication path and also started counting the number of

GET requests in the client→server path. As soon as the client

sent the 6th GET request (that corresponds to the HTML

file), the adversary reduced the bandwidth to 800 Mbps and

Object (Ocurr) HTML I1 I2 I3 I4 I5 I6 I7 I8
T(Req Ocurr) − T(Req Oprev)
(ms) 500 780 0.4 2 0.3 0.1 0.3 2 0.5

T(Req Onext) − T(Req Ocurr)
(ms) 160 0.4 2 0.3 0.1 0.3 2 0.5 26

Sucess (%) of Adversary
Target: One object at a time 100 100 100 100 100 100 100 100 100

Sucess (%) of Adversary
Target: All objects at a time 90 90 85 81 80 62 64 78 64

TABLE II: Prediction Accuracy: Oprev and Onext denote the objects
requested by the client immediately before and after Ocurr respec-
tively. T(Req X) denotes the time of request for object X by the
client.

simultaneously started dropping 80% application packets in

the server→client path. It does so for the next 6 seconds

to force the client to send a Reset Stream signal to the

server. After this point, the jitter value was increased to 80
ms additional delay per GET request packet so as to force

the server to transmit the 8 consecutive image files in non-

multiplexed form.

Results. Table II shows the accuracy of our adversary in

identifying the 9 different objects of interest from the en-

crypted traffic. The 8 images can appear in any order in the

survey result, depending on the user response, where Ii is

the ith image in the sequence. In absence of any adversarial

intervention, the degree of multiplexing of each of these

objects range from 80% to 99%. We consider our attack to

be successful only when the adversary is able to bring down

the degree of multiplexing of the object of interest to 0%
and identify it from the encrypted traffic. In the context of

isidewith.com, when the adversary is interested in just one

object, our adversary was able to find it with 100% accuracy

all the time as shown in Table II. On the other hand, if

the adversary were to be interested in identifying the entire

sequence of images, the accuracy was highest for I1 but

gradually drops for later images. This is because the later

images required adding more jitter which resulted in a broken

connection. Additional jitter was required since the previous,

current, and next GET requests are issued by the client in

quick succession. For instance, request for I5 has spacing of

0.1 ms and 0.3 ms with the previous and and next requests as

shown in Table II.

Ethical Considerations. Adherence to ethical standards was

strictly ensured during all experiments. All the volunteers were

made aware about the goal of our research work and they had

absolutely no stake in the outcome of the survey. We also

informed the developers of isidewith.com about our findings

and the need to fix their website.

VI. RELATED WORK

Ours is the first research work to perform encrypted traffic

analysis on HTTP/2. Prior works [2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12] in this domain target users of HTTP/1.x websites

to predict the websites/webpages they accessed, either over

anonymous communication channels such as Tor [26] or over

simple encrypted channels such as HTTPS. Recent research

works [23, 24] have ascertained the difficulty of extending

the attack techniques used in HTTP/1.x to HTTP/2. Specif-

ically, the researchers highlight the complications introduced
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by HTTP/2 multiplexing in the context of object size based

attacks. While it may seem intuitive to use machine learning

or even deep learning to learn the complex patterns in HTTP/2

traffic, our paper uses an alternative approach. Our work

focuses on preventing multiplexing from occurring in the first

place, thereby simplifying the attack.

The adversarial scheme presented in this paper affirms the

fact that HTTP/2 multiplexing is not a reliable and sound

enough feature for designing defense solutions against website

fingerprinting attacks.

VII. CONCLUSION AND FUTURE WORK

Privacy schemes that rely on HTTP/2 multiplexing are not

dependable and can be attacked by our proposed adversary.

Our adversary is built on the general principles stated in

the paper and can be extended to other real-world web-

sites/scenarios. Our contribution is especially significant since

HTTP/2 is in the early stages of getting adopted worldwide,

and communicating the pitfalls of recent research works on its

privacy is important. Going forward, we identify the following

research directions.

Improving the Adversary. The success rate of our adversary

drops to 60% in cases where a large number of consecutive

objects are of interest. We believe that triggering the packet

drops and jitter addition accurately will alleviate this problem,

possibly using machine learning. Another possible extension

would be to infer the object identity even when the object is

partly multiplexed. Our preliminary experiments suggest that

this is indeed possible, however, at the cost of employing

complex analysis techniques. In our limited experience, we

have observed that variations in network speed may result in

innumerable ways in which the objects can be multiplexed, all

of which need to be accounted for.

Exploring other types of web traffic Exploring the suitability

of our technique for other types of web traffic, such as stream-

ing traffic, is an interesting direction. We strongly believe that

our attack technique can supplement the existing attacks on

HTTP/2 streaming [27], which is also in its nascent stages.

Improving HTTP/2 privacy. Several HTTP/2 features such

as server push and prioritization that are not a function of

the underlying network can be leveraged for privacy. For

instance, the client can opt for a different priority/order of

object delivery every time, thereby confusing the adversary.
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