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Abstract—HTTP/2 introduced multi-threaded server operation
for performance improvement over HTTP/1.1. Recent works have
discovered that multi-threaded operation results in multiplexed
object transmission, that can also have an unanticipated positive
effect on TLS/SSL privacy. In fact, these works go on to design
privacy schemes that rely heavily on multiplexing to obfuscate
the sizes of the objects based on which the attackers inferred
sensitive information. Orthogonal to these works, we examine if
the privacy offered by such schemes work in practice.

In this work, we show that it is possible for a network ad-
versary with modest capabilities to completely break the privacy
offered by the schemes that leverage HTTP/2 multiplexing. Our
adversary works based on the following intuition: restricting only
one HTTP/2 object to be in the server queue at any point of
time will eliminate multiplexing of that object and any privacy
benefit thereof. In our scheme, we begin by studying if (1)
packet delays, (2) network jitter, (3) bandwidth limitation, and (4)
targeted packet drops have an impact on the number of HTTP/2
objects processed by the server at an instant of time. Based on
these insights, we design our adversary that forces the server to
serialize object transmissions, thereby completing the attack. Our
adversary was able to break the privacy of a real-world HTTP/2
website 90% of the time, the code for which will be released.
To the best of our knowledge, this is the first privacy attack on
HTTP/2.

Index Terms—HTTP/2 attack, HTTP/2 privacy, encrypted
traffic analysis

I. INTRODUCTION

The Facebook-Cambridge Analytica data scandal [1]
showed the monetary value of seemingly unimportant personal
preferences (e.g., Facebook pages liked) of website users. In
recent times, a more severe form of privacy attack, that does
not even require access to the end user or the server devices,
has been reported. This form of attack is carried out by an
adversary that compromises a network device that sits between
the client and the server and relies merely on the encrypted
traffic exchanged between the two. Further, this attack is totally
non-intrusive and does not require compromising the decryp-
tion key. Instead, the adversary analyzes the encrypted traffic
using statistical and machine learning techniques to reveal
web access patterns that are indicative of user preferences.
Many research works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] have
highlighted the vulnerability of HTTP/1.x (with SSL/TLS)
based webservers to these encrypted traffic analysis attacks.

Traffic analysis attacks on HTTP/1.x-based websites use
the sizes of encrypted objects (images, JavaScript files, etc.)
transmitted by the server to uniquely identify the webpage
accessed by the client. For instance, a research work [13] was
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able to identify the political leaning of users of a popular
survey website [14, 15, 16] just based on the size of encrypted
image files. Although there exist other channels through which
such information can be inferred by an adversary, encrypted
object size is the most reliable and widely used side-channel.
Consequently, the defense techniques [17, 18, 19, 20, 21]
against such attacks aim to obfuscate object sizes, albeit at
the cost of unreasonable CPU and bandwidth overheads, which
often make them impracticable.

The HTTP/2 protocol [22] is being seen by recent research
works [23, 24] as an efficient alternative to such expensive
defense techniques. The idea is to use the newly introduced
multi-threading feature of the HTTP/2 server that can po-
tentially multiplex multiple objects during transmission. By
multiplexing the objects, the resulting TCP stream will have
interleaved segments belonging to different objects, making
it difficult for a network eavesdropper to discern the en-
crypted sizes of objects of interest. Therefore, the parallelism
in object transmission, although introduced for performance
improvements, has the potential to improve privacy without
any additional effort. Orthogonal to these efforts, in this paper,
we investigate the following question:‘Can we depend on
HTTP/2 Multiplexing for obfuscating encrypted object sizes?’.

We show that a network adversary with the same privileges
as a traditional on-path passive eavesdropper can completely
break the privacy guaranteed by HTTP/2 Multiplexing. Our
adversary leverages the simple fact that spacing consecutive
GET requests sent by a client will eliminate any opportunity
for the server to multiplex the objects corresponding to these
requests. We begin by constructing an adversary that alters
network parameters such as latency, jitter, bandwidth, and
packet drops. We then observe the effect of each parameter
on the multiplexing of objects within an HTTP/2 stream. Our
adversary achieves inter-request spacing by adding jitter at the
compromised network device immediately after the request
corresponding to the object of interest is forwarded. Doing
so results in non-multiplexed transmission of the targeted
object, thereby breaking the privacy. However, adding jitter has
the side-effect of intensified multiplexing for the subsequent
objects, which would pose a challenge for the adversary if it
were interested in those objects also. Note that the intensified
multiplexing is mainly due to the retransmission requests sent
for the delayed object (due to jitter) by the client’s TCP layer.

To suppress the intensity of multiplexing of subsequent
objects, we use the following strategies: (1) limit network
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bandwidth, and (2) reset the ongoing HTTP/2 streams. The
adversary limits the network bandwidth to ensure that a limited
number of client requests reach the server. This reduced the
scope for multiplexing at the server, albeit not completely.
When this is not sufficient, the adversary may choose to force
the server to reset all the ongoing HTTP/2 streams. Doing
so will restart the transmission for the subsequent objects
with a clean slate. To achieve this, our adversary drops the
packets carrying retransmitted objects, which in turn makes
the client time-out and request a server reset. Following this,
the client again requests for the subsequent object of interest.
At this point, the adversary repeats the attack as it did for
the first object of interest. We demonstrate the effectiveness of
our enhanced adversary using the website www.isidewith.com,
a political survey website that was recently migrated from
HTTP/1.1 to HTTP/2 for privacy reasons. Our attack was able
to discern all objects of interest 90% of the time. To the best
of our knowledge, this is the first traffic analysis attack on
HTTP/2 technology.

The rest of the paper is organized as follows: Section II
covers the background necessary to understand the paper.
Section III provides a high-level overview of our attack.
Section IV provides a comprehensive analysis of the impact
of network parameters on HTTP/2 multiplexing. Section V
describes our adversary and evaluates its impact on a real-
world website. We discuss the literature related to our work
in Section VI. Finally, we conclude the paper and provide
future directions in Section VII.

II. BACKGROUND

HTTP/2 Multiplexing. The advent of HTTP/2 protocol
brought significant improvements over HTTP/1.1 in terms of
user perception of latency during webpage loads. Contrary to
HTTP/1.1, where requests are processed sequentially, HTTP/2
allows concurrent server threads to serve multiple objects
on the same TCP connection, effectively multiplexing them.
Such a design is particularly useful in avoiding Head-of-Line
blocking — the scenario where a large object in the queue
blocks the subsequent objects from being processed. This
phenomenon is prevalent in HTTP/1.1 and has been widely
exploited by adversaries for performing traffic analysis.

The multiplexed object transmission in HTTP/2 makes it
difficult for a passive adversary to identify individual objects
when TLS/SSL is used. Figure 1 illustrates how a passive
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network adversary perceives non-multiplexed and multiplexed
object transmissions. Case 1 shows a simple scenario where
the client requests for Os after the transmission of O; is
completed. The network adversary that has access only to the
size of the packets can still determine that the transmission
of Oy is complete the moment it receives a delimiting packet,
i.e., the last packet with size that is less than (rarely equal to)
the Maximum Transmission Unit (MTU). Similarly, it can de-
termine the start and end of transmission of Oy. Consequently,
the adversary can sum up the packet sizes corresponding to
01 and O to determine their sizes, from which the objects’
identities can be revealed. On the other hand, in Case 2,
the client requests for Oy before the transmission of O; is
completed. Consequently, the segments of O; get interleaved
with those of Os, thereby making it difficult for the adversary
to estimate the sizes of the individual objects. This fact has
been used by recent works to thwart privacy attacks that
depend on the encrypted object sizes.

Privacy of HTTPS Communication. Privacy, in the context
of Internet communications, is a very fluid concept. In this
work, we consider privacy as the property of a client-server
communication due to which the fine details of the client’s
browsing activities are protected from a passive network eaves-
dropper. An example of such information is the webpage(s)
visited by the client within a website. Despite the use of
TLS/SSL encryption, prior works have shown that it is possible
to infer these fine details by analysis of encrypted network
traffic. A comprehensive study of such works suggest that,
for accurately identifying from encrypted traffic if a particular
webpage within a website was accessed, it is sufficient if (1)
the webpage contains at least one object which is not contained
in any other webpage in the website, (2) the size of the object
is different from those of all other objects that constitute the
website, and (3) the eavesdropper is able to infer the encrypted
object size from the network trace. Hence, we consider that
the privacy of a webpage is completely broken if a network
adversary is able to infer the size of an object that uniquely
identifies the webpage (provided it exists) from encrypted
traffic. So far, researchers have been successful in launching
privacy attacks on HTTP/1.x. On the other hand, the privacy
of HTTP/2 in the aforementioned context is still an ongoing
topic that is being investigated. There are early indications
that HTTP/2 inherently prevents such privacy attacks since
estimating object sizes from encrypted traffic is not possible
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due to multiplexing [23, 24]. Investigating the privacy of

HTTP/2 is the primary objective of our paper.

The privacy of the communication channel can also benefit

from orthogonal technologies such as ToR. However, a larger
proportion of Internet users still do not have access to such
services and are therefore, susceptible to traffic analysis based
attacks. Even when using ToR, traffic analysis could be
employed at the weakest spots such as the ToR entry guard.
Therefore, we strongly advocate a comprehensive investigation
of the privacy offered by the underlying application layer
protocols such as HTTP/1.1 or HTTP/2, before designing
defense techniques that supplement them.
Network Parameters. We have seen that multiplexing can
prevent attempts by a passive network adversary to estimate
object sizes. However, we suspect that multiplexing can be
affected by variations in network conditions — they may
influence the TCP layer parameters such as congestion window
size, which may, in turn, affect the HTTP/2 parameters such
as the intensity of multiplexing. We consider the following
network variations in our work:

1) Delay. An addition of a uniform delay in the network
increases the Round Trip Time (RTT) of every packet
exchanged between the client and the server. However, the
time interval between the transmission of two consecutive
packets on the network remains the same as in the case of
the network with no delay.

2) Jitter. Most real-world networks experience jitter, i.e., vari-
able network delays. Contrary to a network with uniform
delay, in a jittery network, the inter-packet time intervals
are not consistent, when compared to those in case of the
network without jitter.

3) Bandwidth throttling. Bandwidth throttling is often per-

formed by Internet Service Providers (ISPs) to limit the

number of packets transiting the network. Bandwidth lim-

itation may result in slow loading of images and videos in

webpages and degraded quality of video streaming.

Targeted Packet drops. Packets can be dropped in a

targeted manner from any intermediate network device,

either due to benign reasons (such as congestion control at

a router) or due to an adversary residing on the router.

As we will see, changes in traffic patterns at the network layer

affect the multiplexing behavior of the HTTP/2 server. The

implications of this finding are particularly alarming since even

a passive network adversary can control network conditions to

a certain extent.

4)

A. Measuring Privacy

We define a metric to quantify the extent of multiplexing
of objects, which, in turn, will help us in determining if the
information targeted by the adversary is private or not.
Degree of Multiplexing. We define the degree of multiplexing
of an object as the fraction of bytes of the object that is
interleaved with those of another object within the same TCP
stream.

Implication on Privacy. From the definition of degree of
multiplexing, we can say that, in the scenario where the
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Fig. 2: High level overview of proposed adversarial scheme

adversary is able to reduce the degree of multiplexing of an
object to zero, i.e., no byte of the object is interleaved with
another object, they can estimate the encrypted object size.
For instance, if two specific resources are required to uniquely
identify a webpage, a scheme that prevents the multiplexing
of the two objects is sufficient to break the privacy.

III. HIGH LEVEL OVERVIEW

In this section, we provide a high-level overview of our
adversarial scheme. The objective of our adversary is to infer
the webpages accessed by a targeted client (or user) within
a targeted HTTP/2 website using encrypted network traffic
analysis techniques. Our adversary uses encrypted object sizes
as a side-channel. Using encrypted object sizes in HTTP/2
is particularly challenging due to the multiplexed nature of
object transmission. Our adversary is designed to overcome
this challenge.

Figure 2 shows the capability of our adversary and its
impact on HTTP/2 multiplexing. We assume that the adversary
knows which objects to focus on, for breaking user privacy.
Hence, it is sufficient for the adversary to prevent the multi-
plexing of only these objects of interest, which we assume to
be O; in our example. Figure 2a depicts the scenario without
our adversary. At time t¢;, the client sends two successive
GET requests for O; and Os. Let TAT be the time interval
between the two requests, which is very small. At time o, the
packets are routed through the intermediate network device
and reach the server. At time t3, the segments of O; and O2
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Fig. 3: Interleaved object transmission by an HTTP/2 server

are transmitted in an interleaved manner due to server multi-
threading. Finally, at time ¢4, the object segments reach the
client in an interleaved manner, where they are assembled by
the browser.

Figure 2b depicts the same scenario with our adversary
controlling an intermediate networking device. Our adversary
changes the network parameters to delay the GET request
for O, by an additional time d (with respect to arrival time
of O1). This extra delay in arrival of Os’s request ensures
that the server completes transmitting O; before initiating the
transmission of Os. Thus, the network adversary prevents the
multiplexing of the objects of interest. When the adversary is
interested in more than one object in the same TCP stream,
the attack gets challenging due to the repercussions of the
previously introduced delay. We describe how our adversary
overcomes these in the rest of the paper.

Capability of Adversary. Our adversary is a compromised
network device on the client-server path that can (1) access
unencrypted header fields of both control and data packets,
(2) monitor size of encrypted packets, (3) delay packets,
(4) limit the bandwidth of the transit link, and (5) drop
packets. At the outset, this adversary model might seem
stronger than the popular passive adversary model used in prior
works [2, 3,4, 5,6,7, 8,9, 10, 11, 12, 23, 24], which would
only capture network traffic in promiscuous mode. However,
in reality, the privilege required (i.e., superuser access) for
doing so is sufficient for tuning the network parameters. Such
an adversary model is not only realistic but also common
today [25]. Also, since we assume a non-intrusive adversary,
MITM attacks that involve key hijacking and/or server imper-
sonation, or require compromising the client’s browser are out
of scope of this work.

Assumptions and Scope. We make the following assumptions
for our adversarial scheme. (1) We assume that the goal of our
adversary is to infer the identity of objects from the encrypted
HTTP/2 stream. Once this is done, any of the techniques from
the HTTP/1.x literature can be used to launch a full-fledged
privacy attack. (2) We assume that the adversary does not
have the capability to decrypt at the point of real user traffic
collection. Breaking encryption is indeed a difficult problem to
solve, and there exists no practical work that can do this. This
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assumption holds true for most authorized and unauthorized
parties except maybe those involving government agencies. (3)
We assume that the adversary’s behavior cannot be detected
easily at the client or the server since it mimics network issues
that are commonplace. (4) We also assume that the adversary
has sufficient time (= few minutes) to access the website and
tune the network parameters before launching the attack. (5)
We assume that the adversary has the knowledge about the
sequence in which objects in the webpage are requested for
and the specific object that is of interest.

IV. IMPACT OF NETWORK PARAMETERS ON HTTP/2
MULTIPLEXING

In this section, we explain how the network parameters
affect multiplexing at the server. We start by extending Fig-
ure 2 to show the server side operations. Figure 3 shows the
threads that get created at the server corresponding to the GET
requests sent by the client. The server, on receiving the first re-
quest, spawns a thread (T'hread#1), which starts enqueueing
the first segment of O; on the server queue for transmission
on the TCP stream, as shown in Step (1). However, before
Thread#1 could enqueue the second segment of O1, (i.e.,
01 — Segs), the server receives a request for the object Os
from the client and spawns a second thread (T'hread#2) that
starts enqueueing segments of Oy on the server queue (refer
Step (2)). This is followed by the enqueueing of O; — Segs
(refer to Step @) and O, —Segs (refer to Step (3)) respectively.
In the presence of TLS/SSL encryption, this interleaving of
object segments makes it difficult for our network adversary
to estimate object sizes, as discussed in Section III.

We reinforce our explanations with experimental results
on an object in the webpage showing the results for the
2020 Presidential Quiz’ in the website www.isidewith.com.
The object of interest is an HTML file of size ~ 9500 bytes.
By default, the degree of multiplexing of this object is ~ 98%.
We now examine the change in the degree of multiplexing of
this object with change in each of the network parameters,
viz., delay, jitter, bandwidth, and packet drops.

A. Delay

Introducing uniform delay for all packets on client — server
path in the network cannot increase the inter-arrival time
between two successive packets at the server. Hence, we do
not use this parameter for our adversarial scheme.

B. Jitter

The inter-arrival time between two successive GET requests
sent by a client can be increased by delaying each of the
request packets by an unequal amount of time. The proposed
adversary can achieve this by introducing a calculated amount
of network jitter on the client-server path. For instance, in our
example, the first request can be delayed by O ms, second
by d ms, the third by 2d ms, and so on, to achieve an inter-
arrival spacing of d ms. The amount of jitter to be introduced
should depend on the size of the object of interest, the time
elapsed since the previous GET request, and the time interval
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Fig. 4: Effect of network jitter on multiplexing of objects in HTTP/2

before the issuance of the next GET request by the client under
normal network conditions.

Figure 4 illustrates the HTTP/2 server behavior under jittery
network conditions by extending Figure 3. The adversary
holds back the client request for O, at the intermediate
network device for a longer time than usual. Consequently,
the server thread serving O; (i.e., Thread#1) completes the
transmission of all the segments of O; in single-threaded mode
before the request for O, reaches the server (refer to Step @
and Step (2)). Therefore, if O; is the only object of interest
to the adversary, then its start and end points of transmission
and hence its size can be estimated.

When the adversary is also interested in a subsequent object
(O5 in this example), introducing jitter in the network can
introduce complications. This happens when the client request
for O, is delayed for a considerably long period of time. This
may lead the server to send duplicate acknowledgements (dup-
ACKs) to a previous GET request sent by the client, which
makes the client believe that the request for Os has been
dropped in the channel. When this happens, the client sends a
bunch of retransmission requests, called TCP Fast-retransmits,
for the same object to the server within a short span of
time (denoted by ReqOs* and ReqO2**). The retransmitted
requests cause the HTTP/2 server to spawn multiple concurrent
threads (Thread#2, Thread#3 and Thread#4) that serve
multiple copies of Oy to the client over the same TCP
stream in interleaved manner, thereby resulting in intensified
multiplexing.

In our experiment, the object of interest in isidewith.com
is the 6" object downloaded by the client. Table I shows the
impact of increasing jitter values on the degree of multiplexing
of the object. For each jitter value shown in the table, the
webpage was downloaded 100 times. Initially the number of
cases where the object was not at all multiplexed increased
steadily with an increase in the amount of jitter until 50 ms.
However, increasing jitter further did not have any effect.
This was because, at this point, the number of retransmission
requests (> 130) started increasing manifold and the segments
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Increase in delay Cases where Increase in

¢ object of interest no. of
gfll;)reques was not multiplexed | retransmissions

(%) (%)

0 (baseline) 32 0 (baseline)
25 46 ~ 33
50 54 ~ 130
100 54 ~ 194

TABLE I: Effect of jitter on HTTP/2 multiplexing

== Number of non-multiplexed cases
Number of retransmissions
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Fig. 5: Effect of bandwidth limitation on multiplexing of objects in
HTTP/2

of the retransmitted objects got interleaved with those of the
object of interest. Therefore, we set the jitter such that the
inter-arrival time of requests is 50 ms. The next challenge for
our adversary is to reduce the number of object retransmissions
and object retransmission requests.

C. Bandwidth Limitation

Reducing the bandwidth during an ongoing communication
session, given a particular amount of delay in the network,
reduces the bandwidth-delay product (BDP). BDP is a measure
of how much information (outstanding packets) the commu-
nication channel can hold at a given instant of time. When
the BDP reduces, the TCP protocol at the communication
endpoints responds to this change by decreasing the size of
the TCP sender window. We rely on this intuition to reduce
the number of fast-retransmit requests sent by the client.

We extend the setup described in Section IV-B with band-
width limits applied at the compromised network device. Note
that the bandwidth limits are applied for both incoming and
outgoing packets. Our experiment starts with a channel band-
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width of 1000 Mbps. During the course of the experiment, we
varied the bandwidth to 800 Mbps, 500 Mbps, 100 Mbps and 1
Mbps. For each bandwidth, the webpage was downloaded 100
times and we noted the corresponding degree of multiplexing
of the object.

Our experimental results show that throttling the network
bandwidth indeed reduces the number of retransmissions as
seen in Figure 5 (solid line). Contrary to our expectation,
the percentage of cases in which our object of interest was
in non-multiplexed state, i.e., success cases (dashed line),
initially goes up sharply till 800 Mbps but reduces gradually
right after. When we delved deeper, we understood that a
significant percentage of successes observed till 800 Mbps
can be attributed to a retransmitted version of the object and
not the actual object. With a rapid decline in the number of
retransmissions post 800 Mbps, the number of such success
cases also reduce, thereby affecting the overall number of
success cases at the lower bandwidths. Note that it was not
possible to reduce the bandwidth beyond 1 Mbps because that
resulted in a broken connection. Based on our observations,
we limit the bandwidth of the medium to 800 Mbps. However,
this can only improve the success rate to a small extent.

D. Targeted Packet Drops — forcing HITP/2 Stream Reset

In this section, we investigate if another feature of HTTP/2
protocol, namely, the HTTP/2 stream reset, can further im-
prove the success rate of our attack. The HTTP/2 reset
stream was introduced to enhance the efficiency of a server
especially when dealing with a highly lossy communication
channel. Typically, the client sends the TCP fast-retransmit
requests to deal with network layer delays and losses that are
not persistent. However, when the communication channel is
highly lossy, the client sends the HTTP/2 reset stream signal
to the server (indicated by a packet with the corresponding
HTTP/2 stream number and RST_STREAM flag set). Reset
Stream is particularly interesting since the server closes the
stream and flushes the corresponding object segments from its
queue thereby reducing the load on the network immediately.
In response to the lossy medium, the client’s TCP stack also
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increases the timeout for fast-retransmits. After Stream Reset,
the client resends GET requests if a high priority object is
not yet received. We now exploit this feature to improve the
success rate of our attack.

Figure 6 depicts a scenario that builds on the scenario de-
scribed in Figure 4: firstly adding jitter (refer section IV-B) fol-
lowed by limiting the network bandwidth (refer section IV-C).
To force a HTTP/2 stream reset, our adversary drops many
packets on the server — client path (mimicking a lossy
network) carrying the objects segments until the client resets
the streams as shown in Figure 6. After reset, the client again
sends the request for Os. The client’s TCP also waits for
a longer time before attempting to send fast-retransmission
requests. Consequently, by this time, the server can completely
transmit Oz in single-threaded mode. The most challenging
part of this phase of the attack is to identify when to start
and stop dropping packets. This is because the adversary
cannot discern the retransmitted objects from the actual ones.
The adversary can either use a timer or use the number
of forwarded GET requests (identified by using the filter
‘ssl.record.content_type==23").

We experimentally verified the effect of targeted packet drop
(with both jitter and bandwidth limits applied) on HTTP/2
multiplexing on the HTML file of size 9500 Bytes. Since
the object is the 6! in the stream, the adversary drops 80%
packets on server — client path from the time of transmission
of the 6! GET request from the client. We continue the packet
drops for 6 seconds until the client sends stream reset. The
experiment was repeated 100 times and we observed a success
rate of =~ 90%, where the object of interest was transmitted in
non-multiplexed state after the Reset Stream signal was sent
by the client. However, further increasing the packet drop rate
resulted in a broken connection.

V. OUR PRIVACY ATTACK

We now demonstrate a real-life adversarial attack ' using
the insights obtained from Section IV. However, finding a

IRepository: https://bitbucket.org/gmit91/http2_privacy_attack
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real website with the complete implementation of HTTP/2
protocols is difficult today. Most HTTP/2 websites do not
enable multiplexing either due to lack of awareness (disabled
by default) or to avoid the extra storage required. Since our
objective was to disprove that HTTP/2 multiplexing offers
privacy, we demonstrated on the strongest HTTP/2 website
known to us.

We chose isidewith.com [14], since it is the most widely
cited website in the fingerprinting literature. This website
allows users to identify their political leanings for the 2020
Presidential Elections’. It is also noteworthy that this is the
same website that migrated from HTTP/1.1 to HTTP/2 shortly
after privacy concerns were raised in a prior work [13]. Our
evaluation suggests that currently it is resilient to most of the
known attacks.

Target Website. The website works as follows. In response
to the survey, a webpage containing the list of 8 political
parties in order of preference of the user is displayed. The
webpage consists of an HTML page that contains hyperlinks
of 47 embedded objects, such as JavaScript files, images, and
style files. One of these JavaScripts, on execution, makes the
client to consecutively send request to the server for 8 images
within a short span of time. Each image corresponds to the
emblem of one of the 8 political parties, and the order in which
the client issues requests for these images is the same as that in
which they are displayed on the result webpage. The images of
the political party emblems are of size ranging between 5K B
to 16 K B. Our adversary attempts to infer the order in which
the 8 political parties appear on the webpage by encrypted
traffic analysis. In short, the adversary has 9 different objects
of interest — one HTML file and 8 image files. Note that our
adversary has a pre-compiled list of image size to political
party mapping which it leverages to complete the attack.
Client setup. The experiment was conducted with the help
of several volunteers (=~ 500) participating in the survey from
different client systems inside our laboratory over a period of
three months. They were asked to use the Firefox browser,
which, to the best of our knowledge, is the only browser to
have implemented HTTP/2 multiplexing efficiently. Each time,
the volunteers noted down the survey results (sequence of
political parties), which was later used as the golden reference
to determine the prediction accuracy of our adversary.
Adversary Setup. We designated our lab’s gateway (with
1 Gbps link) as the adversary. The gateway monitored the
transiting traffic and whenever it could detect a connection to
isidewith server, it launched the attack. The adversary was
made up of 3 basic components — (a) the traffic monitor,
which was implemented using tshark; (b) the network con-
troller, which was implemented using bash scripts; and, (c)
the object prediction module, which was implemented using
Python scripts. In the first phase of the attack, the adversary
introduced jitter (of 50 ms additional delay) in the client-server
communication path and also started counting the number of
GET requests in the client—server path. As soon as the client
sent the 6'" GET request (that corresponds to the HTML
file), the adversary reduced the bandwidth to 800 Mbps and
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Object (Oourr) HTML| I [ I | I [ 1o [ Is | Io | I | Is
(Tn(ll:)eq Ocurr) — T(Req Oprea) | 500 [750] 04| 2 [03]0.1]03] 2 |05
(];fll:)eq Onext) = TReq Ocurr)| 165 |04 2 [03]01]03] 2 |05]26
SIGC (7)) GiF ACNAREy 100 [100|100|100|100| 100|100 | 100 | 100
Target: One object at a time

Sucess (%) of Adversary

Target: All objects at a time 2 90 | 85| 81|80 6264|7864

TABLE II: Prediction Accuracy: Oprey and Oneqt denote the objects
requested by the client immediately before and after Ocyrr respec-
tively. T(Req X) denotes the time of request for object X by the
client.

simultaneously started dropping 80% application packets in
the server—-client path. It does so for the next 6 seconds
to force the client to send a Reset Stream signal to the
server. After this point, the jitter value was increased to 80
ms additional delay per GET request packet so as to force
the server to transmit the 8 consecutive image files in non-
multiplexed form.

Results. Table II shows the accuracy of our adversary in
identifying the 9 different objects of interest from the en-
crypted traffic. The 8 images can appear in any order in the
survey result, depending on the user response, where I; is
the i*" image in the sequence. In absence of any adversarial
intervention, the degree of multiplexing of each of these
objects range from 80% to 99%. We consider our attack to
be successful only when the adversary is able to bring down
the degree of multiplexing of the object of interest to 0%
and identify it from the encrypted traffic. In the context of
isidewith.com, when the adversary is interested in just one
object, our adversary was able to find it with 100% accuracy
all the time as shown in Table II. On the other hand, if
the adversary were to be interested in identifying the entire
sequence of images, the accuracy was highest for [; but
gradually drops for later images. This is because the later
images required adding more jitter which resulted in a broken
connection. Additional jitter was required since the previous,
current, and next GET requests are issued by the client in
quick succession. For instance, request for I5 has spacing of
0.1 ms and 0.3 ms with the previous and and next requests as
shown in Table II.

Ethical Considerations. Adherence to ethical standards was
strictly ensured during all experiments. All the volunteers were
made aware about the goal of our research work and they had
absolutely no stake in the outcome of the survey. We also
informed the developers of isidewith.com about our findings
and the need to fix their website.

VI. RELATED WORK

Ours is the first research work to perform encrypted traffic
analysis on HTTP/2. Prior works [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12] in this domain target users of HTTP/1.x websites
to predict the websites/webpages they accessed, either over
anonymous communication channels such as Tor [26] or over
simple encrypted channels such as HTTPS. Recent research
works [23, 24] have ascertained the difficulty of extending
the attack techniques used in HTTP/1.x to HTTP/2. Specif-
ically, the researchers highlight the complications introduced

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 19,2025 at 00:50:04 UTC from IEEE Xplore. Restrictions apply.



by HTTP/2 multiplexing in the context of object size based
attacks. While it may seem intuitive to use machine learning
or even deep learning to learn the complex patterns in HTTP/2
traffic, our paper uses an alternative approach. Our work
focuses on preventing multiplexing from occurring in the first
place, thereby simplifying the attack.

The adversarial scheme presented in this paper affirms the
fact that HTTP/2 multiplexing is not a reliable and sound
enough feature for designing defense solutions against website
fingerprinting attacks.

VII. CONCLUSION AND FUTURE WORK

Privacy schemes that rely on HTTP/2 multiplexing are not
dependable and can be attacked by our proposed adversary.
Our adversary is built on the general principles stated in
the paper and can be extended to other real-world web-
sites/scenarios. Our contribution is especially significant since
HTTP/2 is in the early stages of getting adopted worldwide,
and communicating the pitfalls of recent research works on its
privacy is important. Going forward, we identify the following
research directions.

Improving the Adversary. The success rate of our adversary
drops to 60% in cases where a large number of consecutive
objects are of interest. We believe that triggering the packet
drops and jitter addition accurately will alleviate this problem,
possibly using machine learning. Another possible extension
would be to infer the object identity even when the object is
partly multiplexed. Our preliminary experiments suggest that
this is indeed possible, however, at the cost of employing
complex analysis techniques. In our limited experience, we
have observed that variations in network speed may result in
innumerable ways in which the objects can be multiplexed, all
of which need to be accounted for.

Exploring other types of web traffic Exploring the suitability
of our technique for other types of web traffic, such as stream-
ing traffic, is an interesting direction. We strongly believe that
our attack technique can supplement the existing attacks on
HTTP/2 streaming [27], which is also in its nascent stages.
Improving HTTP/2 privacy. Several HTTP/2 features such
as server push and prioritization that are not a function of
the underlying network can be leveraged for privacy. For
instance, the client can opt for a different priority/order of
object delivery every time, thereby confusing the adversary.
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